Category Archives: Fungi

Neofusicoccum mangiferae (Syd. & P. Syd.) Crous, Slippers & A. J. L. Phillips, 2006

California Pest Rating for
Neofusicoccum mangiferae (Syd. & P. Syd.) Crous, Slippers & A. J. L. Phillips, 2006
Pest Rating: C

PEST RATING PROFILE
Initiating Event:

The current status and rating of Neofusicoccum mangiferae in California is reassessed and a permanent rating is proposed.

History & Status:

Background:  Neofusicoccum mangiferae is a fungal plant pathogen belonging to the family Botryosphaeriaceae.  The species was originally named Dothiorella mangiferae but since then has undergone several taxonomic revisions and is also been known as Nattrassia mangiferae, Fusicoccum mangiferae, and Hendersonula cypria (Crous et al., 2006; Farr & Rossman, 2016).

In California, Neofusicoccum mangiferae is widespread and has been found in different hosts including walnut and fig causing branch wilt and limb dieback (Michailides et al., 2007), in citrus causing branch and trunk canker (Eskalen et al., 2011) and Indian leaf-laurel fig causing ‘Sooty Canker’ disease (as syn. Nattrassia mangiferae) which severely damaged street plantings of Indian leaf-laurel fig in southern California (Hodel, et al., 2009; Mayorquin et al., 2012).  In addition, during 2015-16, CDFA plant pathologists identified the pathogen from diseased mango and avocado fruit that were intercepted in shipments from Florida to California. In natural infestations, the pathogen is often found in combination with other fungal species.

Disease development:  In Indian laurel-leaf fig and other host plants, Hodel et al., (2009) reported that the pathogen enters the tree primarily through bark wounds produced by mechanical damage, pruning, freezing weather, sunburn, insects, or other diseases.  Smooth, thin-barked trees or those stressed from insufficient water and other factors are especially susceptible to the disease.  The fungus and disease develops most rapidly in warm temperatures (85-105°F) under high humidity. Slightly sunken cankers develop at the wound and point of infection on branches and may expand as the disease progresses.  Once the disease expands to the trunk, the tree dies.  Small, black, pencil-point size fungal fruiting bodies are formed on the cankers while the underlying infected sapwood inside the bark is stained grey to black and sharply demarcated from adjacent light-colored, healthy tissue.   Masses of dark spores are produced by the fruiting bodies and dispersed by wind, rain splash, pruning tools, and insects.

Dispersal and spread: Wind, rain, water-splash, pruning tools, insects, and animals can spread fungal spores to non-infected plants.

Hosts: Agathis spp. (kauri; Araucariaceae), Castanea sativa (European chestnut; Fagaceae), Dioscorea rotundata (white yam; Dioscoreaceae), Eucalyptus grandis (flooded/rose gum; Myrtaceae), Mangifera indica (mango; Anacardiaceae), Manihot esculenta (cassava; Euphorbiaceae), Persea americana (avocado; Lauraceae), Prunus armeniaca (ansu apricot; Rosaceae), Phoenix dactylifera (date palm; Arecaceae), Cupressus (cypress; Cupressaceae), Robina pseudoacacia (black locust; Fabaceae), Tibouchina urvilleana (glory bush/purple glory tree; Melastomataceae), Ficus microcarpa (Indian laurel-leaf fig; Moraceae)) F. carica (edible fig: Moraceae), Juglans regia (English walnut; Juglandaceae), Citrus sp. (citrus; Rutaceae) (El-Trafi, 2010; Farr & Rossman, 2016; French, 1989; Heath et al., 2011; Mayorquin et al., 2012; Michailides et al., 2007; Nazerian et al., 2015).  Vitis vinifera (grape: Vitaceae) was reported as a host of Neofusicoccum mangiferae in China (Dissanayake et al., 2015).

Symptoms: Neofusicoccum mangiferae causes blight of inflorescences, rachis, and branches of infected host plants.  Symptoms include branch and trunk cankers, branch wilt and dieback, lesions and rot of fruit, rachis and flower discoloration and necrosis.

The pathogen has been reported to be associated with rachis necrosis and inflorescence blight in mango in Puerto Rico (Serrato-Diaz et al., 2014), lesions and progressive rot in mango and avocado fruit in Taiwan (Ni et al., 2009, 2010), Walnut branch wilt, fig branch dieback, citrus branch and/or trunk cankers, branch dieback and tree death symptoms of sooty canker disease in Indian laurel-leaf fig trees in California (Eskalen et al., 2011; Michailides et al., 2007; Hodel et al., 2009). In China, symptoms associated with grapevine dieback were characterized by partial or total death of affected cordons, with brown U-shaped necrotic sectors and brownish-black spot in cross-sections of affected trunks and arms (Dissanayake et al., 2015).

Damage Potential: In mango, disease incidences of 20-100% have been reported (Serrato-Diaz et al., 2014; El-Trafi, 2009) as well as 30-72% rot disease in stored mango fruit (Ni et al., 2010).  In several cities in Los Angeles County, California, the pathogen has devastated landscape plantings of Indian laurel-leaf fig tree by causing severe damage and death (Hodel et al., 2009).  Branch and trunk canker of citrus and other tree hosts may lead to decline or death of branches and whole plants (Eskalen et al., 2011; Michailides et al., 2007).

Worldwide Distribution: Asia: India, Iran, Myanmar, Pakistan, Taiwan; Africa: Benin, Nigeria, South Africa, Sudan; Europe: Cyprus; North America: Arizona, California, Hawaii, Washington, West Virginia; South America: Uruguay; Caribbean: Puerto Rico; Australia (CABI, 2016; USDA ARS, 2016; Farr & Rossman, 2016).

Official Control: None reported.

California Distribution: Neofusicoccum mangiferae is widespread in California in northern and southern coastal and valley counties including, Fresno, Los Angeles, Riverside, San Diego, San Luis Obispo, Tulare, and Ventura Counties (Eskalen et al., 2011; French, 1989; Hodel et al., 2009; Mayorquin et al., 2012).

California Interceptions From June 2014 to August 2016, Neofusicoccum mangiferae has been detected in eight shipments of mango and one shipment of avocado fruit imported to California (CDFA Pest and Damage Records).

The risk Neofusicoccum mangiferae would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Medium (2):  Neofusicoccum mangiferae is able to establish in California under warm to hot and very humid climates.  Already, it is distributed within the State in certain southern and northern coastal and valley counties.

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

– Low (1) has a very limited host range.

Medium (2) has a moderate host range.

– High (3) has a wide host range.

Risk is Medium (2):  Neofusicoccum mangiferae has a moderate and diverse host range. In California it has been found in Indian laurel-leaf fig tree, edible fig, citrus, avocado, and chestnut.  It has been detected in intercepted shipments of mango and avocado fruit.

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

Risk is Medium (2): Numerous numbers of spores are produced by this pathogen due to its high reproduction.  However, spore dispersal to non-infested hosts is dependent on external factor such as wind, water-splash, rain, infected pruning tools, insects, and animals. Therefore, it is given a Medium score.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

Risk is High (3): Neofusicoccum mangiferae could lower crop yield, value, increase production costs, require changes in normal pruning practices, and can be spread by insects and animals, thereby, qualifying it for a high score for economic impact.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Risk is High (3): Infections of tree hosts used as commercial landscape, ornamental and private gardens plantings could result in disrupting natural communities in those environments, subsequently requiring official or private treatments.

Consequences of Introduction to California for Neofusicoccum mangiferae:

Add up the total score and include it here. (Score)

-Low = 5-8 points

-Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 13

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is High (-3): Neofusicoccum mangiferae has been reported from certain southern and northern coastal and valley counties.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 9.

Uncertainty:  

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Neofusicoccum mangiferae is C.

References:

CABI.  2016.  Neofusicoccum mangiferae datasheet (basic).  http://www.cabi.org/cpc/datasheet/115758 .

Crous, P. W., B. Slippers, M. J. Wingfield, J. Rheeder, W. F. O. Warasas, A. J. L. Philips, A. Alves, T. Burgess, P. Barber, and J. Z. Groenewald.  2006.  Phylogenetic lineages in the Botryosphaeriaceae.  Studies in Mycology 55: 235-253.

Dissanayake, A. J., W. Jhang, X. Li, Y. Zhou, T. Chethana, E. Hukeatirote, K. D. Hyde, J. Yan, G. Zhang, and W. Zhao.  2015.  First report of Neofusicoccum mangiferae associated with grape dieback in China.  Phytopathologia Mediterranea temp25-30.  DOI: 10.14601/Phytopathol_Mediterr-15159.

El-Trafi, M. A.  2010.  Studies on mango branch wilt disease caused by Neofusicoccum mangiferae.  FAO Agris Records.  http://agris.fao.org/openagris/search.do?recordID=SD2010000222 .

Eskalen, A., A. Adesemoye, and D. Wang.  2011.  Identification of different species causing Botryosphaeriaceae canker in citrus reveal Neofusicoccum mangiferae with Scytalidium-like synanomorph.  Phytopathology, 101: S49.

Farr, D.F., & A. Y. Rossman.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved January 28, 2016, from http://nt.ars-grin.gov/fungaldatabases/.

French, A.M. 1989. California Plant Disease Host Index. California Department of Food and Agriculture, Sacramento, 394 pages.

Heath, R.N., J. Roux, B. Slippers, A. Drenth, S. R. Pennycook, B. D. Wingfield, and M. J. Wingfield.  2011.  Occurrence and pathogenicity of Neofusicoccum parvum and N. mangiferae on ornamental Tibouchina species. Forest Pathology, 41: 48-51.

Hodel, D. R., A. J. Downer, and D. M. Mathews.  2009.  Sooty canker, a devastating disease of Indian laurel-leaf fig trees.  Western Arborist 35: 28-32.

Mayorquin, J. S., A. Eskalen, A. J. Downer, D. R. Hodel, and A. Liu.  2012.  First report of multiple species of the Botryosphaeriaceae causing bot canker disease of Indian laurel-leaf fig in California.  Plant Disease, 96:459. http://dx.doi.org/10.1094/PDIS-08-11-0714.

Michailides, T. J., D. P. Morgan, D. Felts, and H. Reyes.  2007.  Emerging fungal diseases in fruit and nut crops in California.  Phytopathology, 97: S170.

Nazerian, E., H. R. Naji, H. Abdul-Hamid, and M. Moradi.  2015.  Phenotypic and molecular characterization of Neofusicoccum mangiferae, the causal agent of black locust decline.  Journal of Plant Pathology and Microbiology, 6: 1. http://dx.doi.org/10.4172/2157-7471.1000250 .

Ni, H. F., R. F. Liou, T., H. Hung, R. S. Chen, and H. R. Yang.  2010. First report of fruit rot disease of mango caused by Botryosphaeria dothidea and Neofusicoccum mangiferae in Taiwan.  Plant Disease 94: 128. http://dx.doi.org/10.1094/PDIS-94-1-0128C

Ni, H. F., R. F. Liou, T., H. Hung, R. S. Chen, and H. R. Yang.  2009.  First report of a fruit rot disease of avocado caused by Neofusicoccum mangiferae.  Plant Disease 93: 760. http://dx.doi.org/10.1094/PDIS-93-7-0760B

Serrato-Diaz, L. M., L. I. Rivera-Vargas, and R. D. French-Monar.  2014.  First report of Neofusicoccum mangiferae causing necrosis and inflorescence blight of Mango (Mangifera indica) in Puerto Rico.  Plant Disease 98: 570. http://dx.doi.org/10.1094/PDIS-08-13-0878-PDN

USDA ARS.  2016.  Fungi on Mango in India, but not found in the U.S.A.  U.S. Department of Agriculture, Agricultural Research Service, Systematic Mycology and Microbiology Laboratory – Nomenclature Fact Sheets.  July 7, 2016. http://nt.ars-grin.gov/sbmlweb/onlineresources/nomenfactsheets/rptBuildFactSheet_onLine.cfm?thisName=Fungi%20on%20Mango%20in%20India&currentDS=specimens .

USDA PCIT.  2016.  USDA Phytosanitary Certificate Issuance & Tracking System.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment: 

Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: C


Posted by ls

Cercospora coniogrammes Crous & R. G. Shivas 2012

California Pest Rating for
Cercospora coniogrammes Crous & R. G. Shivas 2012
Pest Rating: B

PEST RATING PROFILE
Initiating Event:

On June 14, 2016, a shipment of silver lady fern (Blechnum gibbum) plants from Florida, destined to a nursery in Nippomo, San Luis Obispo County, was intercepted by San Luis County officials.  Diseased plants exhibiting leaf spot symptoms were collected and sent to the CDFA Plant Pathology Laboratory for disease diagnosis.  Suzanne Latham, CDFA plant pathologist, identified the fungal pathogen, Cercospora coniogrammes, by culturing and multigene sequencing.  On July 19, 2016, the pathogen was detected in another shipment of silver lady fern plants from Florida and destined to the same nursery in San Luis Obispo County. The identity of the pathogen was confirmed on August 19, 2016 by the USDA PPQ PM National Identification Services in Beltsville, Maryland.  This detection marked a new US record and is reportable/actionable by the USDA (Bowers, 2016).    The pathogen was given a temporary Q rating and consequently, the shipment of Blechnum gibbum was placed on hold, treated with fungicides, and is currently undergoing 30-day inspections (Schnabel, 2016).  The risk of infestation of C. coniogrammes in California is evaluated and a permanent rating is herein proposed.

History & Status:

BackgroundCercospora coniogrammes is a fungal pathogen that causes leaf spots on fern.  The pathogen was first reported in 2012 from infected bamboo fern, Coniogramme japonica var. gracilis, in Brisbane, Queensland, Australia (Groenewald et al., 2012), and in 2016 from Brazil (Guatimosim et al., 2016).  The detection of C. coniogrammes in California marked a new record of the pathogen in the USA (Bowers, 2016; see ‘Initiating Event’).  Presently, not much is known about the distribution and ecology of the pathogen.

Disease cycle:  In general, in infected plants, Cercospora species produce conidiophores (specialized hypha) that arise from the plant surface in clusters through stomata and form conidia (asexual spores) successively.  Conidia are easily detached and blown by wind often over long distances.  On landing on surfaces of a plant host, conidia require water or heavy dew to germinate and penetrate the host.  Substomatal stroma (compact mycelial structure) may form from which conidiophores develop.  Development of the pathogen is favored by high temperatures and the disease is most destructive during summer months and warmer climates.  High relative humidity is necessary for conidial germination and plant infection.  The pathogen can overwinter in or on seed and as mycelium (stromata) in old infected leaves (Agrios, 2005).  

Dispersal and spread: air-currents, infected nursery plants, infected leaves, seeds (Agrios, 2005).

Hosts: Fern species, namely, Blechnum gibbum, Coniogramme japonica var. gracilis, Hypolepis mitis, Macrothelypteris torresiana (Groenewald et al., 2012; Guatimosim et al., 2016).

Symptoms: Infected host plants exhibit leaf spots on upper and lower sides of leaves and are sub-circular to angular, 1-3 mm in diameter, grey to pale brown, surrounded by a broad brown margin up to 4 mm in diameter (Groenewald et al., 2012).

Damage Potential: Quantitative losses due to Cercospora coniogrammes have not been reported.  Photosynthetic area can be reduced due to leaf spotting.  In severe infections, leaf wilt and drop may be expected.  However, damage potential due to this pathogen is likely to be similar to other Cercospora diseases which is usually low (Agrios, 2005).

Worldwide Distribution: Australia: Queensland; South America: Brazil; North America: USA (Groenewald et al., 2012; Guatimosim et al., 2016).

Official Control: None reported particularly for Cercospora coniogrammes, however, the following countries have Cercospora spp. on their ‘Harmful Organism Lists’: French Polynesia, Madagascar, South Africa, and Sri Lanka (USDA PCIT, 2016).

California Distribution: Cercospora coniogrammes is not known to be established in California.  Interceptions of infected plants in a San Luis Obispo nursery were placed on hold, treated with fungicide, and is currently undergoing 30-day inspections (see, ‘Initiating event’).

California InterceptionsCercospora coniogrammes was detected in only two shipments of Blechnum gibbum intercepted by San Luis Obispo County officials during June and July 2016.

The risk Cercospora coniogrammes would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Medium (2):  Cercospora coniogrammes may be able to establish in large but limited regions in California wherever fern plants are able to grow naturally under high humid and cool to warm temperatures. Silver lady fern, Blechnum gibbum, is cultivated indoors and outdoors in coastal parts of California.

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

Risk is Low (1): Presently, the host range for Cercospora coniogrammes is limited to few species of fern, namely, Blechnum gibbum, Coniogramme japonica var. gracilis, Hypolepis mitis, and Macrothelypteris torresiana.

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

Risk is High (3):  Cercospora coniogrammes has high reproductive potential resulting in the successive production of conidia which are dependent on air currents and infected plants and seed for dispersal and spread.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

– Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

Risk is Medium (2):  Infected host plants with leaf spot symptoms could result in lowered value and loss of markets of nursery-produced fern host plants.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Risk is Low (1): The pathogen could significantly impact ornamental plantings in home/ urban and commercial gardens and recreational environments.

Consequences of Introduction to California for Cercospora coniogrammes:

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 9

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is not established (0):  Cercospora coniogrammes is not established in California and has only been detected in intercepted shipments of fern to the State. 

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 9

Uncertainty:  

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Cercospora coniogrammes is B.

References:

Agrios, G. N.  2005.  Plant Pathology (Fifth Edition).  Elsevier Academic Press, USA.  922 p.

Bowers, J. H.  2016.  Email from J. H. Bowers, USDA, to H. R. Wright, USDA APHIS, forwarded to U. Kodira, CDFA on September 2, 2016.

Farr, D.F., & A. Y. Rossman.  2016.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved September 22, 2016, from http://nt.ars-grin.gov/fungaldatabases/.

Groenewald, J. Z., C. Nakashima, J. Nishikawa, H. D. Shin, J. H. Park, A. N. Jama, M. Groenewald, U. Braun, and P. W. Crous.  2013.  Species concepts in Cercospora: spotting the weeds among the roses. Studies in Mycology 75: 115-170.

Guatimosim, E., P. B. Schwartsburd, R. W. Barreto, and P. W. Crous.  2016.  Novel fungi from an ancient niche: cercosporoid and related sexual morphs on ferns.  Persoonia 37: 106-141.

Schnabel, D. L.  2016.  Email from D. L. Schnabel, CDFA Pest Exclusion, to J. Chitambar, CDFA on September 28, 2016.

USDA PCIT.  2016.  USDA Phytosanitary Certificate Issuance & Tracking System. Sept. 23, 2016.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Pest Rating: B


Posted by ls 

Fusarium brachygibbosum Padwick 1945

California Pest Rating for
Fusarium brachygibbosum Padwick 1945
Pest Rating: C  

PEST RATING PROFILE
Initiating Event: 

On July 18, 2016, CDFA plant pathologists were notified by Dr. R. Bostock, Professor, Department of Plant Pathology, University of California, Davis, of a fungal pathogen, Fusarium brachygibbosum, detected in cold-stored, bare-root nursery almond trees in California. This detection marked a first report of the pathogen in California.  Therefore, a risk analysis of F. brachygibbosum to California agriculture and environment was conducted and a permanent rating is proposed here for the otherwise non-rated pathogen.

History & Status:

Background: In California, Seidle et al. (2016) reported the first detection of Fusarium brachygibbosum from asymptomatic, cold-stored, bare-root propagated almond (Prunus dulcis) trees.  Samples had been collected in fall 2013, from a nursery in Sutter County.

In 2011, that same nursery had experienced the re-emergence of a canker disease that occurred in the late 1900s.  During the winter of 1997-98, a severe canker disease developed during cold storage of dormant almond trees and other fruit tree species in several nurseries in California.  Fusarium acuminatum and F. avenaceum were identified as the primary causal agents of the disease.  The predominant symptoms were necrosis of the inner bark, cambium, and sapwood, which in severe cases, resulted in girdling and death of trees. However, in the absence of external symptoms, internal necrosis was not readily evident in dark-bark trees, but detectable in light-bark trees.  Notably, the canker phase of Fusarium-infected young trees did not become apparent unless predisposed by some physiological stresses.  Consequently, infected trees were distributed to growers and the disease that developed under abiotic stress factors, including desiccation and variable cold storage temperatures, resulted in loss of thousands of trees, newly planted orchards, and millions of dollars (Marek et al., 2013). Fusarium acuminatum and F. avenaceum were also detected along with F. brachygibbosum in the 2013 almond samples reported by Seidle et al. (2016).  The ability to detect F. brachygibbosum during the last few years than earlier was likely due to the availability of molecular tools for distinguishing this pathogen from other Fusarium species associated with nursery trees and storage/processing facilities and fields (Personal communication: Dr. R. M. Bostock, Professor, Department of Plant Pathology, University of California, Davis).

Fusarium brachygibbosum has been found on diverse host species within five plant families and reported from few countries in Asia, Africa, and North America (see ‘Worldwide Distribution’).

Hosts: Citrullus lanatus (watermelon; Cucurbitaceae), Euphorbia larica (spurge; Euphorbiaceae), Sorghum vulgare (broom corn; Poaceae), Triticum spp.  (wheat; Triticeae), Prunus dulcis (syn. P. amygdalus, almond; Rosaceae) (Al-Mahmooli et al., 2013; Farr & Rossman, 2016; Mirhosseini et al., 2014; Renteria-Martinez et al., 2015; Seidle et al., 2016; Van Coller et al., 2016).

Symptoms:  Fusarium brachygibbosum is associated with symptoms of wilting, dieback, and cankers and has often been found infecting plants with a complex of fungi species.  Therefore, symptoms particular to the species have only been demonstrated experimentally through pathogenicity tests.  In pathogenicity tests using almond branches inoculated with F. brachygibbosum and incubated at 15°C for two weeks, Siedle et al. (2016) found that canker lesions (area: 26.7 mm2 to 83.0 mm2) developed, comparable to those produced by F. acuminatum and F. avenaceum. Additionally, F. brachygibbosum was found in asymptomatic almond rootstock.  Experimentally in watermelon, F. brachygibbosum produced variable sized light brown colored lesion at neck and root causing wilting of leaves or whole plants (Renteria-Martinez et al., 2015). The pathogen produced dark brown to black, circular to elliptical leaf spots in oleander (Mirhosseini et al., 2014).  In South Africa, F. brachygibbosum was isolated along with several other Fusarium species from kernels of field-grown wheat exhibiting symptoms of Fusarium head blight disease (Van Coller et al., 2013).

Disease cycle: While the disease cycle has not been reported specifically for Fusarium brachygibbosum, it is likely that it is similar to other Fusarium species causing canker and wilt disease.  Generally, Fusarium species inhabit soils and plants.  They can exist saprophytically, but can also act as opportunistic pathogens.  On hosts predisposed by stress, as in cold storage temperatures, or in combination with other pathogens, symptoms may become severe.  The pathogen overwinters as mycelium or spores in infested crop residues and seed, or as chlamydospores (thick walled asexual spores) in soil, and produces asexual spores (microconidia and macroconidia) which are dispersed to plants and other plant debris by wind or rain-splash. Generally, under warm and humid conditions, sexual spores are produced which are forcibly discharged into the air and transmitted by wind currents to susceptible plants where infection and further development of the pathogen occur.

Damage Potential: Precise losses due to Fusarium brachygibbosum have not been reported.  More than one Fusarium species and/or other fungal species may be present in cold-stored canker diseased nursery stock (Marek et al., 2013).  Fusarium brachygibbosum may remain cryptic and asymptomatic within the host, and the canker phase does not become apparent unless young trees are subjected to some physiological stress. Asymptomatic, infected nursery trees may result in the development of the disease and losses in production in the field.

Transmission: Infected plants, roots, stems, leaves, seeds (Van Coller et al., 2016), plant debris, soil, air currents, rainwater splash, and contaminated equipment.

Worldwide Distribution: Asia: India, Iran, Oman; Africa: South Africa; North America: Mexico, USA (California) (Al-Mahmooli et al., 2013; Farr & Rossman, 2016; Mirhosseini et al., 2014; Renteria-Martinez et al., 2015; Seidle et al., 2016; Van Coller et al., 2016).

Official Control: None reported.

California Distribution: Sutter and Stanislaus Counties (Seidle et al., 2016). However, suspected to be widespread in California (R. M. Bostock, Professor, Department of Plant Pathology, University of California, Davis: personal communication).

California Interceptions:  None reported.

The risk Fusarium brachygibbosum would pose to California is evaluated below.

Consequences of Introduction:  

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Medium (2) – In California, Fusarium brachygibbosum was detected in young almond nursery rooting predisposed to cold storage temperatures.  It was also isolated from soil under almond production (Seidle et al., 2016), and is suspected to be widespread within California.  The disease is likely to establish primarily in nurseries with bare-root propagative almond plants predisposed to abiotic stresses – including temperature variations in cold storage, and in almond production fields within California.  Watermelon is a reported host of the pathogen (although not reported from California) and may also be affected by the disease.

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

Risk is Low (1) Presently, the known host range of Fusarium brachygibbosum is limited to watermelon, almond, wheat, spurge, and broom corn.

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

Risk is High (3) Fusarium brachygibbosum has high reproduction and dispersal potential through infected plants, roots, stems, leaves, seeds, soil, plant debris, air currents, rainwater splash, and contaminated equipment.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

Risk is High (3) – Quantitative estimates of losses in crop yield have not been reported, however, based on losses caused by the complex of other Fusarium species also detected in cold-stored almond tree seedlings in California (Marek et al., 2013), significant loss in crop production, value and yield is possible. However, development of the pathogen and production of visible disease symptoms in young trees is subject to predisposing physiological stresses.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

 Risk is Low (1) – The pathogen has not been reported to significantly impact the environment.  However, leaf spots caused by the pathogen in infected ornamental oleander have been reported (but not from California). 

Consequences of Introduction to California for Fusarium brachygibbosum:

Add up the total score and include it here. (Score)

-Low = 5-8 points

  –Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction of Fusarium brachygibbosum to California = (10).

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Medium (-2).  Fusarium brachygibbosum has been detected in cold-stored young almond rootings in Sutter and Stanislaus Counties, however, the pathogen is suspected to be widespread in California.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 8

Uncertainty:

The full distribution of Fusarium brachygibbosum in California needs to be confirmed.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Fusarium brachygibbosum is C.

References:

Al-Mahmooli, I. H., Y. S. Al-Bahri, A. M. Al-Sadi, and M. L. Deadman.  2013.  First report of Euphorbia larica dieback caused by Fusarium brachygibbosum in Oman. Plant Disease, 97(5):687. http://apsjournals.apsnet.org/loi/pdis.

CABI.  2016.  Fusarium brachygibbosum basic datasheet.  Crop Protection Compendium. http://www.cabi.org/cpc/datasheet/119707.

Farr, D.F., and A. Y. Rossman.  2016.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved January 28, 2016, from http://nt.ars-grin.gov/fungaldatabases/.

Marek, S. M., M. A. Yaghmour, and R. M. Bostock.  2013.  Fusarium spp., Cylindrocarpon spp., and environmental stress in the etiology of a canker disease of cold-stored fruit and nut tree seedlings in California.  Plant Disease 97: 259-270.  http://dx.doi.org/10.1094/PDIS-04-12-0355-RE .

Mirhosseini, H. A., V. Babaeizad, and L. Hashemi.  2014.  First report of Fusarium brachygibbosum causing leaf spot on oleander in Iran. Journal of Plant Pathology, 96(2):431. http://www.sipav.org/main/jpp/.

Renteria-Martinez, M. E., A. Meza-Moller, M. A. Guerra-Camacho, F. Romo-Tamayo, A. Ochoa-Meza, S. F. Moreno-Salazar.  2015.  First report of watermelon wilting caused by Fusarium brachygibbosum in Sonora, Mexico. Plant Disease, 99(5):729. http://apsjournals.apsnet.org/loi/pdis.

Seidle, A. J., M. A. Yaghmour, S. C. Kirkpatrick, T. R. Gordon, and R. M. Bostock.  2016.  First report of Fusarium brachygibbosum causing cankers in cold-stored, bare-root propagated almond trees in California.  (Submitted for publication: Plant Disease, shared with J. Chitambar, CDFA, August, 2016).

Van Coller, G. J., A. -L. Boutigny, L. Rose, T. J. Ward, S. C. Lamprecht, and A. Viljoen.  2013.  Head blight of wheat in South Africa is associated with numerous Fusarium species and chemotypes.  Conference paper: 12th European Fusarium Seminar, at Palais de la Bourse, Bordeaux, France, May 2013.  https://www.researchgate.net/publication/269700231_Head_blight_of_wheat_in_South_Africa_is_associated_with_numerous_Fusarium_species_and_chemotypes


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Pest Rating: C


Posted by ls 

Podosphaera xanthii (Castagne) U. Braun & Shishkoff 2000

Watermelon leaf showing an even distribution of powdery mildew (Podosphaera xanthii) over the entire leaf surface. June 1995 Photo by Gerald Holmes, California Polytechnic State University at San Luis Obispo, Bugwood.org
Watermelon leaf showing an even distribution of powdery mildew (Podosphaera xanthii) over the entire leaf surface. June 1995.  Photo by Gerald Holmes, California Polytechnic State University at San Luis Obispo, Bugwood.org
California Pest Rating for
Podosphaera xanthii (Castagne) U. Braun & Shishkoff 2000
Pest Rating:  C

PEST RATING PROFILE
Initiating Event:

On July 13, 216, diseased leaves of Calibrachoa sp. plants exhibiting powdery mildew symptoms were collected during a regulatory nursery inspection, from a nursery in San Luis Obispo County, by San Luis Obispo County officials and sent to the CDFA Plant Pathology Laboratory for diagnoses.  Suzanne Latham, CDFA plant pathologist, identified the powdery mildew pathogen, Podosphaera xanthii, as the cause for the disease.  The pathogen was assigned a temporary “Z” rating as it has been reported earlier in California and is considered widely distributed.  That rating is reassessed here and a permanent rating is proposed.

History & Status:

Background: Podosphaera xanthii causes powdery mildew disease primarily in cucurbits under field and greenhouse conditions.  The pathogen has a wide host range which includes several ornamental plants, including Verbena. There are several pathogenically distinct races of P. xanthii, and plant resistance-breaking races are present in California.  The pathogen is widely distributed throughout the world (see ‘Worldwide Distribution’ below) as well as in California.  Within California, powdery mildew may be common in coastal and desert production areas, but is more common in fall in the San Joaquin Valley and Sacramento Valley (Davis, et al., 2012).

Podosphaera xanthii was previously known by several names including Sphaerotheca fuliginea and S. fusca.  In 2012, P. caricae-papayae was synonymized with the morphologically similar species P. xanthii (Braun & Cook, 2012) however, the synonymy of P. xanthii and P. caricae-papayae is in question given the molecular work of Takamatsu et al., (2010) who also inferred that further molecular and morphological studies would help to determine the correct taxonomic position of P. caricae-papayae within the genus Podosphaera in the family Erysiphaceae of the order Erysiphales.  (The CDFA risk assessment and rating for P. caricae-papayae is published separately.)

Hosts: Podosphaera xanthii has a wide host range which includes agricultural crops, ornamentals, few fruit, and weed plant species within eight or more families. Hosts include, Citrullus lanatus (watermelon), Cucumis melo (melon), C. sativus (cucumber), Cucurbita (pumpkin), C. maxima (giant pumpkin, C. moschata (pumpkin), C. mixta (pumpkin), C. pepo (synonym: C. ovifera; ornamental gourd), C. vulgaris, Lagenaria siceraria (bottle gourd), Luffa acutangula (angled luffa), L. aegyptiaca (loofah), L. cylindrica, Momordica charantia (bitter gourd), M. cochinchinensis (gac), Sechium edule (chayote), Cyamopsis tetragonoloba (guar), Phaseolus aconitifolius (synonym: Vigna aconitifolia; moth bean), P. coccineus (runner bean), P. vulgaris (common bean), Vigna mungo (black gram), V. radiata (mung bean), V. umbellata (rice-bean), V. unguiculata (synonym: V. catjang; cowpea), Cajanus cajan (pigeon pea), Sesamum indicum (sesame), Capsicum frutescens (chili), Solanum melongena (eggplant),  Hibiscus mutabilis (cottonrose), H. syriacus (shrubby althaea), Hoheria lyallii (synonym: H. populnea; lacebark), Malva pusilla (round-leaved mallow), Carica papaya (papaya), Coriaria arborea (tree tutu), Kalanchoe blossfeldiana (flaming katy), Petunia x hybrid, , Verbena bonariensis (purpletop vervain), V. brasilensis (Brazilian verbena), V. canadensis (clump verbena), Verbena x hybrida (synonym: V. hortensis; garden verbena), V. incisa, V. lasiostachys (western vervain), V. litoralis (blue vervain),V. macdougalii (MacDougal verbena), V. officinalis (common verbena), V. phlogiflora, V. rigida rigid verbena), Calendula sp. C. arvensis (field marigold), C. officinalis (pot marigold), C. palaestina (Palestine marigold),  Cosmos bipinnatus (garden cosmos), Calibrachoa sp.,  Cephalotus follicularis (Albany pitcher plant), Farfugium japonicum (leopard plant), Glandularia pulchella (South American mock vervain), Gynostemma pentaphyllum (jiagulan), Gerbera jamesonii (African daisy), Gynura bicolor (Okinawan spinach), Helianthus annuus (sunflower), Heteropogon contortus (black speargrass), Jatropha gossypiifolia (bellyache bush), Ligularia sibirica, Medusagyne oppositifolia (jellyfish tree), Melampyrum nemorosum (wood cow-wheat), Melothria japonica (Japanese wild cucumber), Melothria sp. Parasenecio hastatus subsp. tanakae, Pericallis cruenta (common cineraria), Physalis alkekengi (Chinese lantern), Pisum sativum (pea), Pulicaria dysenterica (meadow false fleabane), Senecio chrysanthemoides , S. grahamii, S. hercynicus, S. nemorensis, Impatiens hawker (New Guinea impatiens), Ageratum conyzoides (billy goat weed), Bidens bipinnata (Spanish needles), B. cernua (nodding beggarticks), B. frondosa (devil’s beggartick), B. pilosa (blackjack), B. tripartita (three-lobe beggarticks), Boehmeria nivea (Chinese grass), Buddleja brasiliensis, B. salviifolia, Xanthium californicum (synonym: X. strumarium var. canadense; Canada cocklebur), Xanthium italicum, X. pensylvanicum, X. spinosum, X. strumarium (common cocklebur), X. spinosum (spiny cocklebur) Zinnia elegans (zinnia), (CABI, 2016; Farr & Rossman, 2016).

Symptoms:  Powdery mildew symptoms on cucurbits: the disease first appears as pale yellow spots on stems, petioles, and leaves.  These spots enlarge as white powdery fungal growth comprising primarily of asexual spores (conidia) develops on upper and under leaf surfaces, petioles, and stems of infected plants, usually developing first on crown leaves, shaded lower leaves, and leaf undersurfaces.  Affected leaves become dull, chlorotic and may wilt and eventually turn brown and papery (Davis et al., 2012).  Older plants are initially infected and infected leaves usually wither and die.  Premature senescence may occur.  Fruit infection occurs rarely in cucumber and watermelon.  Minute dark brown chasmothecia (sexually produced, closed fruiting structures) have been rarely observed in infected cucurbits in the USA and may be easily overlooked. They may develop late in the season, and the sexual spores within the structures are protected from adverse conditions.  Symptoms are less common on cucumber and melon as many commercial cultivars are resistant to the pathogen (McGrath, 2011).

Disease cycle:  Podosphaera xanthii is an obligate parasite.  Primary sources of inoculum include conidia which can be dispersed over long distances and remain viable for 7-8 days.  The fungus grows on the surface of plant tissue and invades by sending feeding organs (haustoria) into the plants epidermal cells only in order to obtain nutrients.  Mycelium produces conidiophores on the plant surface.  Each conidiophore produces chains of conidia (spores) that are dispersed by air currents.  Powdery mildew develops quickly under favorable conditions of dense plant growth and low light intensity.  High relative humidity is favorable for infection and conidial survival, and infection can occur as low as 50% relative humidity.  Dry conditions favor colonization, sporulation, and dispersal, however, rain and free moisture on plant surfaces are unfavorable.  Optimum temperature for disease development is 20-27°C with infection occurring at 10-32°C.  Powdery mildew development is arrested at 38°C and higher temperatures.  As an obligate parasite, P. xanthii requires living host plants for survival, however, it may also survive as chasmothecia which have been reported rarely in the United States (CABI, 2016; McGrath, 2011).

Damage Potential:  Powdery mildew can diminish the photosynthetic regions of cucurbit leaves. Severely infected leaves turn brown and shriveled.  Fruit quality and yield are reduced.  In squash, fruit quality is reduced by sunscald and premature ripening resulting in poor storability, in melon, incomplete ripening and poor flavor occurs, and pumpkin fruit may be shriveled and discolored (CABI, 2016).  Late fruit usually fail to mature and are small and misshapen.  Stress from disease can result in speckling and oedema on fruit rind.  Powdery mildew-infected plants can be weakened and predisposed to other diseases.  Podosphaera xanthii can be a major production problem of cucurbits in field and greenhouse conditions (McGrath, 2011).

Transmission:  Conidia (spores) are airborne and dispersed by wind currents.  Laboratory studies have shown that conidia remain viable for 7-8 days. On cucurbits in greenhouses conidia are released and spread from plant to plant via irrigation or air currents.  Conidia can overwinter on cucurbit plants in a greenhouse and then be dispersed from greenhouse to field crops during spring and summer.  Non-cucurbit hosts are not a major source of inoculum due to pathological specialization (CABI, 2016; McGrath, 2011).

Survival:  During cool weather, conidia production ceases and powdery mildew fungi overwinter as chasmothecia and mycelium in weeds and dormant plant tissue. However, the sexual (teleomorph) stage has only been found in California greenhouses and reported for the first time in greenhouse grown squash and melons in Salinas, California (Ramos et al., 2010-2011).  Constant greenhouse growth conditions could perpetuate the asexual stage of the fungus.

Worldwide Distribution: Asia: Armenia, Azerbaijan, Bangladesh, China, Republic of Georgia, India, Iran, Iraq, Israel, Japan, Republic of Korea, Kyrgyzstan, Lebanon, Myanmar, Oman, Pakistan, Saudi Arabia, Singapore, Taiwan, Turkey, Turkmenistan Uzbekistan, Vietnam; Africa: Egypt, Ethiopia, Libya, Somalia, South Africa, Sudan, Tunisia; North America: Canada, Mexico, USA; Central America and Caribbean: Cuba, Puerto Rico; South America: Argentina, Bolivia, Brazil, Nicaragua, Uruguay, Venezuela; Europe: Austria, Bulgaria, Czech Republic, (former) Czechoslovakia, Denmark, Estonia, Finland, Former USSR, Romania, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Netherlands, Norway, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom, Ukraine, Yugoslavia (Serbia and Montenegro); Oceania: Australia, New Zealand, Samoa (CABI, 2016; Farr & Rossman, 2016).

Official Control: Podosphaera xanthii is on the ‘Harmful Organism List’ for Guatemala (USDA-PCIT, 2016).

California Distribution: San Luis Obispo, Solano, and Yolo (CDFA Pest and Damage Records); San Joaquin Valley and Sacramento Valley counties, coastal and desert cucurbit production areas (Davis, et al., 2012).

California Interceptions None reported.

The risk Podosphaera xanthii would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Medium (2) – Powdery mildew of cucurbits Podosphaera xanthii can occur in coastal and desert production regions, and is common in fall in the San Joaquin Valley and Sacramento Valley. Powdery mildew thrives in warm and humid environments. Low light levels, high humidity, and moderate temperature enhance disease development.  Dry conditions favor conidia production and dispersal.  The pathogen is already widely distributed within cucurbit production regions of the state.   

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

High (3) has a wide host range.

Risk is High (3) – Podosphaera xanthii has a wide host range that includes agricultural crops – primarily cucurbits, ornamentals, few fruit and weed plants.

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

Risk is High (3) – Under suitable climate conditions, airborne conidia are produced in abundance and readily spread by wind currents to non-infected sites.  Within and outside greenhouse environments, the pathogen is capable of rapidly spreading to non-infested host plants as well as other sites where host plants are grown.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

Risk is High (3) – The pathogen can potentially cause significant losses in plant growth and crop yield. Powdery mildew infections could lower crop yield and value causing significant losses in production – especially with use of protective and eradicative fungicides.  It could result in loss of markets, and change in cultivation practices to prevent the spread of inocula to non-infected, healthy plants.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Risk is Medium (2) The powdery mildew pathogen could significantly impact home/urban gardening and/or ornamental plantings.  

Consequences of Introduction to California for Podosphaera xanthii:

Add up the total score and include it here. (Score)

-Low = 5-8 points

-Medium = 9-12 points

High = 13-15 points

Total points obtained on evaluation of consequences of introduction of P. xanthii to California = (13).

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is High (-3).  Powdery mildew of cucurbits caused by Podosphaera xanthii is widely distributed in California. 

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 10

Uncertainty:

None.

Remark:

The assessment of risk of Podosphaera xanthii distinctly documents its economic importance to California agriculture and environment and its widespread distribution within cucurbit production regions of the State.  Due to its biological capacity for rapid spread and its current widespread instate status, it is highly unlikely that the powdery mildew pathogen of cucurbits can be eradicated from California.  However, control measures, including use of protectant fungicides and resistant varieties, have proven successful in significantly reducing disease intensities and spread (CABI, 2016).  Therefore, a ‘C’ rating is proposed for this pathogen.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Podosphaera xanthii is C.

References:

Braun, U. and R. T. A. Cook.  2012.  Taxonomic manual of the Erysiphales (Powdery Mildews).  Centraalbureau voor Schimmelcultures, vol. 11, 707 p.

CABI.  2016.  Podosphaera xanthii (powdery mildew of cucurbits) full datasheet.  http://www.cabi.org/cpc/datasheet/50922.

Davis, R. M., T. A. Turini, B. J. Aegerter, and J. J. Stapleton.  2012.  Cucurbits powdery mildew pathogens: Sphaerotheca fuliginea (=Podosphaera xanthii) and Erysiphe cichoracearum (=Golovinomyces cichoracearum).  UC IPM Pest Management Guidelines: Cucurbits UC ANR Publication 3445. http://ipm.ucanr.edu/PMG/r116100711.html .

Farr, D.F., and A. Y. Rossman.  2016.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved January 28, 2016, from http://nt.ars-grin.gov/fungaldatabases/.

McGrath, M. T.  2011.  Vegetables: powdery mildew of cucurbits.  Vegetable MD Online, Cooperative Extension, New York State, Cornell University.  Fact sheet Page: 732.30 Date: June 2011.  http://vegetablemdonline.ppath.cornell.edu/

Ramos, C. B., K. Maruthachalam, J. D. McCreight, and R. S. Garcia Estrada.  2010-2011. Podosphaera xanthii but not Golovinomyces cichoracearum infects cucurbits in a greenhouse at Salinas, California.  Cucurbit Genetics Cooperative Report 33-34: 24-28.

Takamatsu, S., S. Ninomi, M. Harada and M. Havrylenko.  2010.  Molecular phylogenetic analyses reveal a close evolutionary relationship between Podosphaera (Erysiphales: Erysiphaceae) and its rosaceous hosts.  Persoonia, 24, 38-48.

USDA PCIT.  2016.  USDA Phytosanitary Certificate Issuance & Tracking System.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


 PEST RATING:  C

Posted by ls

Phyllosticta yuccae Bissett 1986

California Pest Rating for
Phyllosticta yuccae Bissett 1986
Pest Rating: C

PEST RATING PROFILE
Initiating Event:

On June 17, 2016 Yucca elephantipes (Adam’s needle) plants exhibiting leaf spot symptoms were intercepted at a nursery in San Diego County by San Diego County officials.  The shipment had originated in Florida.  Samples of symptomatic leaves were collected by the County and sent to the CDFA Plant Pathology Laboratory for disease diagnosis.  On July 17, 2016 Suzanne Latham, CDFA plant pathologist, identified the fungal pathogen, Phyllosticta yuccae, as the cause for the disease.   The pathogen has not been previously reported in California and therefore, was assigned a temporary Q rating.  Subsequent action taken by CDFA resulted in prevention of the shipment from introduction to California. The risk of infestation of Phyllosticta yuccae in California is evaluated and a permanent rating is herein proposed.

History & Status:

BackgroundPhyllosticta yuccae causes leaf blotch disease in Yucca plants.

Disease cycle:  It is likely that Phyllosticta yuccae has a similar life cycle to that of other Phyllosticta species and overwinters as conidia (asexual spores) in pycnidia (asexual fruiting structures) and ascospores (sexual spores) in perithecia (sexual fruiting structures) in infected plant leaf debris. Conidia and ascospores are only released when the fruiting structures become thoroughly wet.  Conidia are exuded from pycnidia in mucoid mass and are washed down or splashed away by rain or overhead irrigation water.  Ascospores are shot out forcibly from perithecia and carried by air currents.  On landing on host leaf surfaces, conidia or ascospores are germinate and infect plant tissue of young leaves.  Pycnidia are produced within lesions and provide conidia for secondary infections of plants (Agrios, 2005).

Dispersal and spread: rain/water splash, air currents, infected plant material and debris.

Hosts:  Yucca sp., Y. aloifolia, Y. elephantipes, Y. filamentosa (Farr & Rossman, 2016).

Symptoms:  Phyllosticta yuccae infections result in production of leaf spots in Yucca plants.  Initial symptoms include dark brown, elliptical, and scattered lesions which later become grey at the center with a reddish brown margin, irregular and coalesced (Silva et al., 2013).

Disease Potential Symptomatic Yucca plants infected with Phyllosticta yuccae may be more of a serious problem for nursery greenhouse productions where favorable wet requirements for disease development and spread are more likely to occur under controlled environments than in open field environments in California.  The disease could negatively impact value and marketability of nursery-grown Yucca plants.

Worldwide Distribution: Asia: Iran; Caribbean: Dominican Republic; North America: Canada, USA (Florida), Guatemala; South America: Brazil; Oceania: New Zealand (Farr & Rossman, 2016; Silva et al., 2013).

Official Control:  Currently, Phyllosticta yuccae has a temporary Q rating in California.

California Distribution:  Phyllosticta yuccae is not established in California.

California Interceptions: Phyllosticta yuccae was detected once in a shipment of Yucca elephantipes plants from Florida and destined to a San Diego nursery.

The risk Phyllosticta yuccae would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Medium (2): Yucca plants. grow naturally under dry conditions in southern California.  Under those natural conditions, Phyllosticta yuccae may not receive adequate wet conditions for infection and spread.  However, certain species of the host plant may be grown as residential and commercial landscape ornamentals in coastal regions of southern and central California under favorable environments for disease development.     

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

Risk is Low (1):  The host range is limited to Yucca spp.   

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

Risk is Medium (2): Phyllosticta yuccae has high reproductive potential, however, the dispersal of spores from fruiting structures is dependent on wet conditions.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

Risk is Low (1): Nursery grown Yucca plants infected with Phyllosticta yuccae and exhibiting leaf blotch/spot symptoms could lower crop value and marketability.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

 Risk is Medium (2):  Under favorable conditions for disease development, Phyllosticta yuccae may significantly impact ornamental plantings of commercially and home grown Yucca plants.     

Consequences of Introduction to California for Phyllosticta yuccae:

Add up the total score and include it here. (Score)

Low = 5-8 points

-Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 8 (Low).

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Not Established (0).  Phyllosticta yuccae is not established in California 

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 8 (Low).

Uncertainty:

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Phyllosticta yuccae is C.

References:

Agrios, G. N.  2005.  Plant Pathology (Fifth Edition).  Elsevier Academic Press, USA.  922 p.

Farr, D. F. and A. Y. Rossman.  2016.   Fungal databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved August 24, 2016 from http://nt.ars-grin.gov/fungaldatabases/.

Ingram, S.  2008.  Cacti, Agaves and Yuccas of California and Nevada.  Pacific Horticulture, 69 (3): http://www.pacifichorticulture.org/articles/cacti-agaves-and-yuccas-of-california-and-nevada/

Silva, A.D.A., Pinho, D.B., Jr., Hora, B.T., and Pereira, O.L. 2013. First Report of Leaf Spot Caused by Phyllosticta yuccae on Yucca filamentosa in Brazil. Plant Disease 97: 1257.

Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


PEST RATING:  C


Posted by ls

Pseudocercospora smilacicola U. Braun, 2014

California Pest Rating for
Pseudocercospora smilacicola U. Braun, 2014
Pest Rating: B

PEST RATING PROFILE
Initiating Event:

On July 21, 2016, a shipment of lance leaf greenbrier (Smilax sp.) plants from Texas, destined to a wholesale plant company in Santa Barbara, was intercepted by the Santa Barbara County officials.  Diseased plants exhibiting leaf spot symptoms were collected and sent the CDFA Plant Pathology Laboratory for disease diagnosis.  The fungal pathogen, Pseudocercospora smilacicola, was identified as the cause for the leaf spots, by Cheryl Blomquist, CDFA plant pathologist.  This pathogen was also detected on March 23, 2016 and September 30, 2015, from Smilax sp. plant shipments that had originated in Texas and were destined for wholesale plant companies in Santa Barbara and Riverside Counties respectively.  The pathogen was given a temporary Q rating.  The risk of infestation of P. smilacicola in California is evaluated and a permanent rating is herein proposed.

History & Status:

Background:  Pseudocercospora smilacicola is a fungal plant pathogen that belongs to a larger group of Cercospora-like fungi most of which cause leaf spot symptoms in host plants. The pathogen has previously been referred to as Ceracospora petersii and C. (or Pseudocercospora) mississippiensis, which are synonym species of Exosporium petersii which is morphologically distinguished from P. smilacicola (Braun et al., 2014; Farr & Rossman, 2016).  However, Braun et al., (2014) reported that Pseudocercospora mississippiensis on Smilax riparia from Korea is morphologically indistinguishable from the Cuban and North American collections of P. smilacicola.

Disease cycle: Infected plants produce conidiophores (specialized hypha) that arise from the plant surface in clusters through stomata and form conidia (asexual spores) successively.  Conidia are easily detached and blown by wind often over long distances.  On landing on surfaces of a plant host, conidia require water or heavy dew to germinate and penetrate the host.  Substomatal stroma (compact mycelial structure) may form from which conidiophores develop.  Development of the pathogen is favored by high temperatures and the disease is most destructive during summer months and warmer climates.  High relative humidity is necessary for conidial germination and plant infection.  The pathogen can overwinter in or on seed and as mycelium (stromata) in old infected leaves (Agrios, 2005).  

Dispersal and spread: air-currents, infected nursery plants, infected leaves, seeds.

Hosts: Smilax auriculata (earleaf greenbrier), S. laurifolia (laurel greenbrier), S. pseudochina (bamboo vine), S. riparia, S. rotundifolia (roundleaf greenbrier), Smilax sp. (Braun et al., 2014).

Symptoms:  Infected host plants exhibit leaf spots on both leaf surfaces and are sub-circular to angular or irregular, 1-10 mm in diameter, initially pale then turn dark brown and later develop a paler center, brownish to greyish brown, occasionally somewhat zonate with darker brown to black margin.  Lesions or spots may be slightly raised and occasionally surrounded by a diffuse lighter halo (Braun et al., 2014).

Damage Potential: Specific losses due to Pseudocercospora smilacicola have not been reported.  Photosynthetic area can be reduced due to leaf spotting.  In severe infections, leaf wilt and drop may be expected.  However, damage potential due to this pathogen is likely to be similar to other Cercospora diseases which is usually low (Agrios, 2005).  In California, Smilax californica and S. jamesii grow indigenously in the northern mountain and valley regions (Calflora, 2016).  Smilax sp. vines and foliage are used in floral decorations and therefore, diseased plants could be of concern to greenbrier floral/ornamental production nurseries.

Worldwide Distribution: Asia: Japan, Korea; North America: USA, Cuba. (Braun et al., 2014).  In the USA, Pseudocercospora smilacicola has been found in Georgia, Florida, Louisiana Mississippi, and Pennsylvania (Braun et al., 2014).

Official Control: None reported.

California Distribution: Pseudocercospora smilacicola has not been reported from California.  The pathogen is not known to be established in California.

California Interceptions:  Pseudocercospora smilacicola was detected shipments of Smilax sp. plants intercepted thrice from September 2015 to July 2016 (see ‘Initiating Event’).

The risk Pseudocercospora smilacicola would pose to California is evaluated below.

 Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Medium (2): In California, host plants (Smilax spp.) grow indigenously in warm and humid conditions in northern mountain and valley regions.  If introduced, the pathogen could establish in those limited areas.    

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

Risk is Low (1):  The host range for Pseudocercospora smilacicola is limited to Smilax spp.

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

Risk is High (3):  Pseudocercospora smilacicola has high reproductive potential resulting in the successive production of conidia which are dependent on air currents and infected plants and seed for dispersal and spread.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

Risk is Low (1):  Infected host plants with leaf spot symptoms could lower value of nursery-produced Smilax plants used in floral/ornamental decorations.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Risk is High (3):  Two plant species, namely, Smilax californica and S. jamesii, are native to California and grow under warm, humid conditions in northern mountain and valley regions of the State.  The plants grow as under story plants in pine and mixed evergreen forest communities and provide food for wild animals and birds. Climate conditions may be conducive for the development of the pathogen if introduced.  In severe infections, available food could be reduced for wildlife.  Smilax jamesii is included in the California Native Plant Society Inventory of Rare and Endangered Plants on List 1B.3 7th/8th edition.  Also, the pathogen could significantly impact nursery production of ornamental greenbrier foliage and vines.

Consequences of Introduction to California for Pseudocercospora smilacicola:

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 10

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is not established (0):  Pseudocercospora smilacicola is not established in California and has only detected in intercepted plant shipments to the State.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 10

Uncertainty:  

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Pseudocercospora smilacicola is B.

References:

Agrios, G. N.  2005.  Plant Pathology (Fifth Edition).  Elsevier Academic Press, USA.  922 p.

Braun, U., Crous, P.W., and Nakashima, C. 2014. Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae). IMA Fungus 5: 203-390.

Calflora.  2016.  Information on California plants for education, research and conservation. [Web application].  Berkeley, California: The Calflora Database [a non-profit organization]. http://www.calflora.org/

Farr, D.F., & A. Y. Rossman.  2016.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved August 1, 2016, from http://nt.ars-grin.gov/fungaldatabases/.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment

Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


 Pest Rating: B


Posted by ls

Sclerophthora rayssiae var. zeae Payak & Renfro 1967

California Pest Rating for
Sclerophthora rayssiae var. zeae Payak & Renfro 1967
Pest Rating: C

PEST RATING PROFILE
Initiating Event:

Sclerophthora rayssiae var. zeae was recently proposed by the USDA to be removed as a select agent from the 2016 updated Select Agents Registration List and Select Agent Regulations.  Currently, the pathogen is not rated in California.  Therefore, the risk of introduction and establishment of this pathogen in California is assessed and a permanent rating is proposed herein.

History & Status:

Background: Sclerophthora rayssiae var. zeae is an oomycete pathogen that causes brown stripe downy mildew disease of maize.  The disease was first observed in several maize-growing regions of India in 1962, and the pathogen was described by Payak and Renfro in 1967.  Since its initial discovery, the disease has spread through India has also been reported from Mynmar, Nepal, Pakistan, and Thailand (CABI, 2016; Putnam, 2007; EPPO, 2016).

Sclerophthora rayssiae var. zeae has not been reported within the USA (CABI, 2016; USDA, 2013).  In 2002, the USDA designated the pathogen a ‘select agent’ deemed to be very damaging to susceptible maize and sources of resistance, if any, had not been established for U. S. maize varieties (USDA, 2013).  However, on January 14, 2016, after its fourth biannual review, the USDA proposed to remove S. rayssiae from the updated Select Agents Registration List and Select Agent Regulations.  Removal of select agents, by the USDA, was based on either the absence of viable samples present in the U.S., no climate conducive to growth, or the availability of adequate treatments for the agents (USDA, 2016).

Hosts: Zea mays (maize), Z. mays var. indurata; Digitaria sanguinalis (large crabgrass), D. bicornis (CABI, 2016; EPPO, 2016; Farr & Rossman, 2016; Putnam, 2007).

Symptoms: Characteristic symptoms of Sclerophthora rayssiae var. zeae infection are expressed only in leaves as vein-delimited narrow chlorotic or reddish to purple stripes, 3 to 7 mm wide, depending on maize genotype, extending parallel with the leaf veins. Other parts of the plant including leaf sheaths, husk leaves, ears or tassels do not exhibit symptoms even though all the leaves may be symptomatic.  Early infections appear as vein-delimited chlorotic flecks which enlarge and coalesce to form stripes. At first the stripes are chlorotic or yellowish but later turn yellowish-tan to reddish-brown and necrotic.  The disease initially appears on the lowermost leaves which have a high level of striping, and appear pale-brown and burnt.  Severely affected leaves may be shed prematurely.  In comparison, leaves around the ear shoot show a lesser amount of striping and the leaves above show the least.  The veins are not affected, but in severe infections, leaves tear apart near the apices and become tattered.  Greyish-white downy growth develops on the upper and lower surfaces of the stripes on leaves.  The downy growth disappears as the stripes become necrotic.  Sporangia disappear as the lesions become necrotic and oospores are produced only in necrotic tissue.  Unlike other downy mildews of maize, brown stripe downy mildew does not result in malformation of floral and vegetative tissues (CABI, 2016; Putnam, 2007).

Disease cycle:  The disease cycle involves both sexual and asexual reproduction.  Oospores (sexual spores) germinate to produce sporangia (sac-like structures containing spores), which then release zoospores (motile spores) that penetrate leaf tissue.  Moisture is critical for infection.  A twelve-hour wetting period of a free film of moisture on a leaf surface is essential for infection to occur.  Longer wetting periods increase the amount of infection (Singh et al., 1970).   Once primary infection occurs, the disease becomes established and lesions are formed in leaves.  Sporangia are produced and a cyclic chain of secondary infections occur that eventually result in the spread of the disease throughout an entire crop (CABI, 2016). High levels of moisture and warm temperatures are required for disease development and spread.  Asexual reproduction, resulting in the production of sporangia is most abundant at 22 to 25°C.  Sporangia production, germination, and infection require a film of water (Putnam, 2007; CABI, 2016). Oospores are produced in necrotic leaf tissue and form the survival stage of the pathogen in soil or in plant debris.

Dispersal and spread The pathogen survives as oospores in soil or plant debris.  Oospores serve as primary inoculum for infections of plants, where the lower leaves show greater disease intensity than the upper leaves, and can survive in soil or plant debris for several years (CABI, 2016; Fry & Grűnwald, 2010).  Experimentally, oospores were shown to be viable for up to 3 years when powdered infected leaf debris was placed around each seed at the time of sowing, resulting in heavy infection of the emerging seedlings (Singh et al., 1970). Seed transmission may also occur, although the initiation of new infections is less likely through seed transmission than infected leaf debris (Putnam, 2007).  The pathogen may be found on the seed surface and within the embryo (CABI, 2016; Putnam, 2007).  The pathogen is dispersed short distances by wind and rain splash or physical contact with infected plants.  Long distance transmission by wind is unlikely (Singh & Renfro, 1971).

Damage Potential: Brown stripe downy mildew of maize causes severe infections in areas of high rainfall.  In India, 20 to 90% in crop losses are reported.  Losses above 70% occur in highly susceptible maize cultivars grown under disease-favorable conditions (CABI, 2016).  In California, the required warm temperature and long wet periods (heavy rain durations) for disease development and spread are not present.  Therefore, the potential for damage caused by the pathogen to California’s maize production, can be considered to be minimal, if at all.

Worldwide Distribution: Asia: India, Mynmar, Nepal, Pakistan, Thailand (CABI, 2016).

Official Control: Presently, Sclerophthora rayssiae var. zeae is on the ‘Harmful Organism Lists’ of the following countries: Honduras, Namibia, New Zealand, Peru, and South Africa (USDA-PCIT, 2016).  The USDA designated S. rayssiae var. zeae a select agent in 2002, however, on January 14, 2016, the USDA proposed to remove S. rayssiae from the updated Select Agent Registration List and Select Agents Regulations (see ‘Background’.

California Distribution: Sclerophthora rayssiae var. zeae is not present in California.

California Interceptions:  There are no reports of the detection of Sclerophthora rayssiae var. zeae in plant and soil shipments imported to California.

The risk Brown stripe downy mildew of maize would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas. 

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Low (1):   Sclerophthora rayssiae var. zeae is not likely to establish in California as the required warm temperature and long wet periods (12 hours or more) for disease development and spread are not present.

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

Risk is Low (1): Maize and crabgrass are the only reported hosts of the pathogen.

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

Risk is High (3):  Under favorable wet conditions, Sclerophthora rayssiae var. zeae has high reproductive potential.  The pathogen is dispersed primarily through infected soil, plant debris, and maize seeds.  Short distance spread is by wind and rain splash or physical contact with infected plants.  Long distance transmission by wind is reported to be unlikely.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

Risk is Low (1):  In California, the required warm temperature and long wet periods (heavy rain durations) for disease development and spread of the pathogen, are not present, thereby, making it most unlikely for the pathogen to establish and cause infections to the State’s maize cultivation. However, within contained and artificially controlled conditions as in greenhouses, it is possible for pathogen infections to occur.  The economic impact is therefore, regarded low.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Risk is Low (1):  No environmental impacts due to the pathogen are expected to occur in California.

Consequences of Introduction to California for Brown stripe downy mildew of maize:

Add up the total score and include it here. (Score)

Low = 5-8 points

-Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 7

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is ‘Not established’ (0):

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 7

Uncertainty:

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Sclerophthora rayssiae var. zeae is C.

References:

CABI.  2016.  Sclerophthora rayssiae var. zeae (brown strip downy mildew of maize) full datasheet.  http://www.cabi.org/cpc/datasheet/49244

EPPO.  2016.  Sclerophthora rayssiae var. zeae ().  PQR database.  Paris, France: European and Mediterranean Plant Protection Organization.  http://www.newpqr.eppo.int.

Farr, D.F., and A. Y. Rossman.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved January 28, 2016, from http://nt.ars-grin.gov/fungaldatabases/.

Fry, W. E. and N. J. Grűnwald.  2010.  Introduction to Oomycetes.  The Plant Health Instructor.  DOI:10.1094/PHI-I-2010-1207-01

Payak, M. M., and B. L. Renfro.  1967.  A new downy mildew disease of maize.  Phytopathology, 57:394-397.

Putnam, M. L.  2007.  Brown stripe downy mildew (Sclerophthora rayssiae var. zeae) of maize.  Plant Management Network International Plant Health Progress, published 8 November 2007. http://www.plantmanagementnetwork.org/pub/php/diagnosticguide/2007/stripe/

Singh, J. P., and B. L. Renfro.  1971.  Studies on spore dispersal in Sclerophthora rayssiae var. zeae.  Indian Phytopathology, 24:457-461.

Singh, J. P., B. L. Renfro, and M. M. Payak.  1970.  Studies on the epidemiology and control of brown stripe downy mildew of maize (Sclerophthora rayssiae var. zeae).  Indian Phytopathology, 23:194-208.

USDA.  2013.  Recovery plan for Philippine downy mildew and brown stripe downy mildew of corn caused by Peronosclerospora philippinensis and Sclerophthora rayssiae var. zeae, respectively.   http://www.ars.usda.gov/SP2UserFiles/Place/00000000/opmp/Corn%20Downy%20Mildews%20Recovery%20Plan%20Revised%202013.pdf

USDA, 2016.  Stakeholder announcement: USDA proposes updates to select agents registration list and select agent regulations.  USDA APHIS. Published January 14, 2016.

USDA PCIT.  2016.  USDA Phytosanitary Certificate Issuance & Tracking System.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment: 

Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: C


Posted by ls

Peronosclerospora philippinensis (W. Weston) C. G. Shaw, 1978

peronosclerospora philippinensis | photo by Bob Kemerait, Univ of Georgia, Bugwood.org
California Pest Rating for
Peronosclerospora philippinensis (W. Weston) C. G. Shaw, 1978
Pest Rating: C

PEST RATING PROFILE
Initiating Event:

Peronosclerospora philippinensis was recently proposed by the USDA to be removed as a select agent from the 2016 updated Select Agents Registration List and Select Agent Regulations.  Currently, the pathogen is not rated in California.  Therefore, the risk of introduction and establishment of this pathogen in California is assessed and a permanent rating is proposed herein.

History & Status:

Background: Peronosclerospora philippinensis is an oomycete pathogen that causes Philippine downy mildew disease.  The disease is destructive mainly to corn in tropical Asia, endemic to the Philippines, and has also been reported from China, India, Indonesia, Nepal, Pakistan, Taiwan, and Congo, Mauritius, and South Africa (CABI, 2016; EPPO, 2016; Farr & Rossman, 2016).  The pathogen has not been reported within the USA (Farr & Rossman, 2016; USDA, 2013).

In 2002, the USDA designated Peronosclerospora philippinensis a ‘select agent’ deemed to be very damaging to susceptible maize and sources of resistance, if any, had not been established for U. S. maize varieties (USDA, 2013).  However, on January 14, 2016, after its fourth biannual review, the USDA proposed to remove P. philippinensis from the updated Select Agents Registration List and Select Agent Regulations.  Removal of select agents, by the USDA, was based on either the absence of viable samples present in the U.S., no climate conducive to growth, or the availability of adequate treatments for the agents (USDA, 2016).

Hosts: Hosts include species within the family Poaceae.  Zea mays (maize) is the main host.  Other hosts include, Andropogon sorghum (Sorghum bicolor, sorghum), Avenae sativa (oats), Euchlaena luxurians, Saccharum officinarum (sugarcane), S. spontaneum (wild sugarcane), Sorghum halepense (Johnson grass), Zea mays subsp. mexicana (teosinte) (CABI, 2016; EPPO, 2016; Farr & Rossman, 2016).

Symptoms: Systemic symptoms are expressed in the first true leaf stage as stripes or overall yellowing of an entire leaf.  Local symptoms are expressed as long chlorotic streaks with downy growth of conidia (spores) and conidiophores.  This downy growth is the site of spore production and may be present on both upper and lower leaf surfaces, but is more common on the lower surface.  Tassels may be malformed and produce less pollen, and ears may be aborted.  Early infected plants are stunted and may die.  Infected stems do not show external symptoms, but may be stunted (CABI, 2016).  The pathogen invades the stem, and becomes established in the shoot apex producing chlorotic areas, which are initially confined to the base of the lower leaf but later increase in size in succeeding leaves.  The youngest leaf emerging from the whorl becomes completely chlorotic.  The pathogen becomes established within seed, as mycelium in the pericarp layer, and also within the embryo and endosperm.  However, no external symptoms on seed are expressed and seed quality is not affected (CABI, 2016).

Disease cycle:  Although the Philippine downy mildew pathogen was reported to produce oospores (overwintering sexual spores) on corn leaf, there have been no subsequent reports.  Even though the Philippine downy mildew pathogen was reported in 1967 to produce overwintering sexual spores (oospores), on corn leaf, there have not been any subsequent reports since then and therefore, the role of oospores has not been established in the life cycle or disease caused by this pathogen (USDA, 2013). Airborne conidia (spores) released from infected crops or weeds form primary source of inoculum for infection. Germinating conidia produce germ tubes which penetrate stomata of leaves.  The optimum temperature for germination and germ tube growth is 18-30°C.  Penetration is followed by invasion of the mesophyll.  Soon the disease becomes established and lesions are formed in leaves.  Conidia are produced under night temperatures ranging from 21 to 26°C and free moisture.  Moisture is critical for infection.  Secondary infections occur that eventually result in the spread of the disease throughout an entire crop.  Seed transmission can occur at low rates from seeds harvested with higher moisture content (CABI, 2016).

Dispersal and spread Peronosclerospora philippinensis is commonly spread by wind and rain.  Production of conidia requires night temperatures ranging from 21 to 26°C and free moisture.  Disease severity is highest in areas that receive 39-78 inches of rain annually and in tropical climates.  The pathogen is dispersed short distances by wind.  Although the pathogen is present within infected seed, it has been demonstrated that once the seed or grain is dried to below 14% it will not produce an infected plant (Adenle & Cardwell, 2000; USDA 2013).

Damage Potential: Before resistant varieties became widely available in the Philippines, annual yield losses of maize were often 40 to 60%.  Yield losses of sweet corn were 100%. Disease severity is highest in areas that receive 39-78 inches of rain annually and in tropical climates (USDA, 2013).  In California, the required warm temperature and long wet periods (heavy rain durations) for disease development and spread are not present.  Therefore, the potential for damage caused by the pathogen to California’s maize production, can be considered to be minimal, if at all.  Furthermore, the pathogen is seed transmissible, but transmission will not occur once the seed has been dried to the moisture content required for storage.  Seed treatments are available to eradicate the pathogen (CABI, 2016).

Worldwide Distribution: Asia: China, India, Indonesia, Japan, Nepal, Pakistan, Philippines, Taiwan, Thailand; Africa: Mauritius, Congo, South Africa (CABI, 2016; Farr & Rossman, 2016).

Official Control: Presently, Peronosclerospora philippinensis is on the ‘Harmful Organism Lists’ of the following countries: Colombia, French Polynesia, Guatemala, Honduras, Indonesia, Japan, Republic of Korea, Morocco, Namibia, New Caledonia, New Zealand, Peru, South Africa, and Timor-Leste  (USDA-PCIT, 2016).  The USDA designated S. rayssiae var. zeae a select agent in 2002, however, on January 14, 2016, the USDA proposed to remove S. rayssiae from the updated Select Agent Registration List and Select Agents Regulations (see ‘Background’).

California Distribution: Peronosclerospora philippinensis is not present in California.

California Interceptions:  There are no reports of the detection of Peronosclerospora philippinensis in plant and soil shipments imported to California.

The risk Philippine downy mildew disease would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas. 

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Low (1):   Peronosclerospora philippinensis is not likely to establish in California as the required warm temperature and long wet periods (12 hours or more) for disease development and spread are not present.

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

Risk is Low (1): The host range is limited to include species within the family Poaceae.  Maize is the main host, cultivated sugarcane, oats, sorghum cultivars, and weedy grass species including Euchlaena luxurians, wild sugarcane, Johnson grass, and Zea mays subsp. mexicana (teosinte).

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

Risk is High (3):  Under favorable wet conditions, Peronosclerospora philippinensis has high reproductive potential.  The pathogen is dispersed primarily through infected soil, plant debris, and maize seeds.  Short distance spread is by wind and rain splash or physical contact with infected plants.  Long distance transmission by wind is reported to be unlikely.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

Risk is Low (1):  In California, the required warm temperature and long wet periods (heavy rain durations) for disease development and spread of the pathogen, are not present, thereby, making it most unlikely for the pathogen to establish and cause infections to the State’s maize cultivation. However, within contained and artificially controlled conditions as in greenhouses, it is possible for pathogen infections to occur. Seed transmission of the pathogen will not occur once the seed has been dried to the moisture content required for storage and the pathogen can be eradicated from seed through seed treatments. The economic impact is therefore, regarded low.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Risk is Low (1):  No environmental impacts due to the pathogen are expected to occur in California.

Consequences of Introduction to California for Brown stripe downy mildew of maize:

Add up the total score and include it here. (Score)

  -Low = 5-8 points

-Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 7

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is ‘Not established’ (0):

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 7

Uncertainty:  

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Peronosclerospora philippinensis is C.

References: 

Adenle, V. O., and K. F. Cardwell. 2000.  Seed transmission of maize downy mildew (Peronosclerospora sorghi) in Nigeria. Plant Pathology 49:628-634.

CABI.  2016.  Peronosclerospora philippinensis (Philippine downy mildew) full datasheet.  http://www.cabi.org/cpc/datasheet/44646

EPPO.  2016.  Peronosclerospora philippinensis (PRSCPH).  PQR database.  Paris, France: European and Mediterranean Plant Protection Organization.  http://www.newpqr.eppo.int.

Farr, D.F., and A. Y. Rossman.  2016.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved January 28, 2016, from http://nt.ars-grin.gov/fungaldatabases/.

Fry, W. E. and N. J. Grűnwald.  2010.  Introduction to Oomycetes.  The Plant Health Instructor.  DOI:10.1094/PHI-I-2010-1207-01

Payak, M. M., and B. L. Renfro.  1967.  A new downy mildew disease of maize.  Phytopathology, 57:394-397.

USDA.  2013.  Recovery plan for Philippine downy mildew and brown stripe downy mildew of corn caused by Peronosclerospora philippinensis and Sclerophthora rayssiae var. zeae, respectively.   http://www.ars.usda.gov/SP2UserFiles/Place/00000000/opmp/Corn%20Downy%20Mildews%20Recovery%20Plan%20Revised%202013.pdf

USDA, 2016.  Stakeholder announcement: USDA proposes updates to select agents registration list and select agent regulations.  USDA APHIS. Published January 14, 2016.

USDA PCIT.  2016.  USDA Phytosanitary Certificate Issuance & Tracking System.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment: 

Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: C


Posted by ls

Calonectria pteridis Crous, M. J. Wingf. & Alfenas, 1993

California Pest Rating for
Calonectria pteridis Crous, M. J. Wingf. & Alfenas, 1993
Pest Rating: B

PEST RATING PROFILE
Initiating Event:

On April 19, 2016, diseased Ravenea rivularis (majesty palm) plants exhibiting leaf spots were intercepted by San Luis Obispo County Agricultural officials. The shipment of plants had originated in Florida and was destined to a nursery in San Luis Obispo County.  Symptomatic leaves were sent to the CDFA Plant Pest Diagnostics Branch for diagnosis.  Suzanne Latham, CDFA plant pathologist, identified the associated pathogen as Calonectria pteridis.  Then on May 23, 2016, C. pteridis was detected again in a different shipment of majesty palm plants destined to the same nursery in San Luis Obispo.  In both detections, the pathogen was assigned a temporary Q rating by the CDFA and consequently, all infected plant materials were destroyed. The risk of infestation of C. pteridis in California is evaluated and a permanent rating is proposed here.

History & Status:

Background:  Calonectria pteridis is the sexual (telemorph) stage of the fungal pathogen, while its asexual (anamorph) stage is Cylindrocladium pteridisCalonectria pteridis causes leaf spot and blight, stalk and root rot diseases in various hosts.  In the continental United States, Calonectria pteridis primarily causes symptoms of leaf spots and blights in palm.  Symptoms are indistinguishable from those caused by three other species in the genus (Yu & Elliot, 2013).  In Brazil, C. pteridis is one of the most common species associated with eucalyptus trees causing Calonectria leaf blight disease (Alfenas et al., 2013). In China, C. pteridis caused serious damage to Serenoa repens – an important medicinal and ornamental garden plant (Yang, et al., 2014).  In the USA, C. pteridis has been found on several hosts including palm from Tennessee, Georgia, Florida, and Hawaii (Uchida, 2004; Farr & Rossman, 2016). Recently, the pathogen was detected in infested majesty palm plants shipped from Florida to California.  The pathogen is widespread especially in subtropical and tropical regions.

Disease cycle:  The disease cycle generally involves the pathogen’s anamorphic or asexual stage resulting in the production of conidia (spores) and telemorphic or sexual stage resulting in perithecia (fruiting structure) and ascospores. Conidia, produced on infected plants are dispersed by insects, tools, gloves, plant handling, wind and splashing water, while ascospores are discharged from fruiting bodies by air currents and splashing water.  Discharged spores land on plant host tissue and germinate and penetrate tissue when leaves are wet or under high relative humidity.  The pathogen grows within the host and after about one week produces conidiophores and conidia.  Perithecia and ascospores are formed on infected tissue (Uchida, 2004; Yu & Elliot, 2013).

Hosts: Calonectria pteridis can attack a number of hosts including ornamentals, forest and environmental trees and shrubs, and few agricultural crops.  In the USA, palms have been reported as the main host attacked by the pathogen.  Hosts include: Arachis hypogaea (peanut), Arachnoides adiantiformis  (syn. Rumohra adiantiformis, Polystichum adiantiformis; leatherleaf fern), Arecastrum romanzoffianum (syn. Sygarus romanzoffiana; queen palm); Asparagus plumosus (asparagus fern), Callistemon citrinus (crimson bottlebrush), C, rigidus (erect bottlebrush), Chamaedorea elegans (syn. Collinia elegans; neanthe bella palm/parlor palm), C. cataractarum (cat palm), Chrysalidocarpus sp. (syn. Dypsis sp.; palm); Cissus rhombifolia (grape ivy), Cocos nucifera (coconut), Crassula sp., C. argentea (jade plant), Dictyosperma album (princess palm), Dracaena marginata (Marginate Dracaena), Drosera sp. (sundews), Dryopteris sp. (woodfern), Elaeis guineensis (African oil palm), Eucalyptus spp.,(eucalyptus), Guzmania wittmackii (bromeliad/Guzmanea), Heliconia bihai (macawflower), Howeia belmoreana, H. forsteriana (kentia palm/curly palm), Laccospadix australasica (Atherton palm), Leucadendron sp., Livistona chinensis (Chinese fan palm), Lupinus sp., (lupine), Mauritia flexuosa (moriche palm), Melaleuca leucadendra (weeping paperback), M. quinquenervia (broad-leaved paperback), Musa sp. (banana), Nephrolepis sp., Nephrolepis exaltata (sword fern), Phoenix canariensis (Canary Island date palm), Pinus sp., P. caribaea (Caribbean pine), P. caribbaea var. hondurensis,  P. oocarpa (Mexican yellow pine), Pouteria dulcifica (syn. Synsepalum dulcificum; miracle fruit/sweet berry), Ravenea rivularis (majesty palm), Rhapis humilis (slender lady palm), Rhododendron obtusum (Hiryu azalea/Kurume azalea), Serenoa repens (saw palmetto), Scolopendrium sp., Solanum tuberosum (potato), Strelitzia reginae (bird of paradise), Tillandsia wagneriana (bromeliad), Washingtonia sp., W. filifera (California or desert fan palm), W. robusta (Mexican fan palm) (Crous et al., 1993; Crous & Wingfield, 1993; Farr & Rossman, 2016; Yu & Elliot, 2013).

Symptoms:  Symptoms caused by Calonectria pteridis in palm begin as flecks of small, water-soaked lesions that develop to irregular shades of gray, yellow, reddish brown, brown, or black.  Newly formed lesions are circular or elliptical, 3-5 mm long, and on enlarging develop a tan or gray center surrounded by a brownish halo. The rachis and petiole may become infected with small flecks and eventually leaves and leaflets dry as the disease progresses and lesions coalesce.  Leaf spots may appear on leaves of all ages, although mature leaves are most susceptible (Yu & Elliot, 2013).

Spread:   Conidia are readily spread by insects, pruning tools, plant handling, air currents, rain or splashing irrigation water, while ascospores can be released from their fruiting bodies and spread by air currents and splashing water (Uchida, 2004; Yu & Elliot, 2013).

Damage Potential:  Leaf spot and blight disease caused by Calonectria pteridis can result in reduced plant growth, quality, and marketablility.  Estimates of yield/crop loss due to this pathogen have not been reported.  However, under nursery controlled environments, production of palms, ferns, eucalyptus, and other ornamental host plants may be at heightened risk for pathogen infection and reduced plant production. Seedling and immature palms without trunks are likely to be most susceptible to this leaf spot disease (Yu & Elliot, 2013).  Infection of outdoor growths of palm and eucalyptus trees require warm and humid to wet climate for disease development.  In Brazil, C. pteridis is one of the most important causal agents of Calonectria leaf blight disease of Eucalyptus spp. and has significantly reduced eucalyptus growth (Alfenas, et al., 2013).  In China, up to 100% incidence of leaf spot disease in Serenoa repens, medicinal plant, often lead to plant death (Yang, et al., 2014).

Worldwide Distribution: Asia: China, India, Malaysia, Singapore; Africa: Cameroon, Ivory Coast, Mauritius, South Africa; Europe: Spain, North America: USA (Florida, Hawaii), West Indies; South America: Brazil, Costa Rica, Martinique, Venezuela (Crous & Wingfield, 1993; Farr & Rossman, 2016).

Official Control: None reported.  Currently, Calonectria pteridis is a quarantine, actionable pathogen with a Q rating in California.

California Distribution: Calonectria pteridis is not known to be established in California.  Diseased plants detected in a San Luis Obispo nursery were destroyed (see “Initiating Event).

California Interceptions There have been two interceptions of Calonectria pteridis- infested Ravenea rivularis (majesty palm) plants that originated in Florida (see ‘Initiating Event’).

The risk Calonectria pteridis would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Medium (2):  Calonectria pteridis requires humid, wet, rainy and warm climates to infect plants and develop.  Therefore, the pathogen may only be able to establish in limited parts of California.

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

High (3) has a wide host range.

Risk is High (3): Calonectria pteridis has a very wide host range and can attack a number of diverse hosts including ornamentals, forest and environmental trees and shrubs, and few agricultural crops.  In the USA, palms have been reported as the main host attacked by the pathogen.

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

Risk is High (3):  The pathogen has high reproductive potential.  Conidia and ascospores are transmitted by wind, wind-driven rain and splashing irrigation water, cultivation tools, and plant handling.  However conidial germination and plant infection require long, wet periods.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

– Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

Risk is Medium (2): Infections of Calonectria pteridis could lower crop value and cause loss of markets.  Under controlled wet and warm environments, nursery productions of palms and other ornamental host plants may be at particular risk for pathogen infection and reduced plant production.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Risk is Medium (2):  Under conducive climate for development, the pathogen could significantly impact cultural practices or home garden plantings.  Its overall impact on California’s environment is assessed as ‘medium’. 

Consequences of Introduction to California for Calonectria pteridis:

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction of Calonectria pteridis to California = (12).

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Not established (0):  Interceptions of Calonectria pteridis-infected nursery plants were destroyed and therefore, the pathogen is not considered established in California.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

 Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 12.

Uncertainty:  

Periodic surveys and/or subsequent detection may confirm the presence/absence of C. pteridis in commercial and private production regions within California.  Subsequent results may alter the herein proposed rating for the pathogen.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Calonectria pteridis is B.

References:

Alfenas, R. F., O. L. Pereira, R. G. Frietas, C. S. Freitas, M. A. D. Dita, and A. C. Alfenas.  2013.  Mass spore production and inoculations of Calonectria pteridis on Eucalyptus spp. under different environmental conditions.   Tropical Plant Pathology, 38:406-413.

Crous, P. W., M. J. Wingfield, and A. C. Alfenas.  1993. Additions to Calonectria.  Mycotaxon 46:217-234.

Crous, P. W., and M. J. Wingfield. 1993.  Calonectria pteridis.  IMI Descriptions of Fungi and Bacteria. No. 116 pp. Sheet 1153.

Farr, D.F., & A. Y. Rossman.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved January 28, 2016, from http://nt.ars-grin.gov/fungaldatabases/.

Uchida, J. Y.  2004.  Calonectria leaf spot (Cylindrocladium leaf spot).  In ‘Compendium of Ornamental Palm Disease and Disorders’ Eds. M. L. Elliott, T. K. Broschat, J. Y. Uchida, and G. W. Simone.  The American Phytopathological Society, pgs. 12-14.

USDA PCIT.  2016.  USDA Phytosanitary Certificate Issuance & Tracking System.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.

Yang, W., L. Zheng, C. Wang, and C. -P. Xie.  2014.  The first report of Calonectria pteridis causing a leaf spot disease on Serenoa repens in China. Plant Disease. 986: 854.

Yu, J. and M. L. Elliott.  2013.  Calonectria (Cylindrocladium) leaf spot of palm.  University of Florida Institute of Food and Agricultural Sciences.  http://edis.ifas.ufl.edu/PP302.

Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: (916) 262-1110, plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment

Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: B


Posting by ls

Phytophthora quercina T. Jung 1999

California Pest Rating for
Phytophthora quercina T. Jung 1999
Pest Rating: B 

PEST RATING PROFILE
Initiating Event: 

On April 25, 2016, two soil samples with roots of valley oak (Quercus lobata) trees that showed symptoms of stunting in a restoration site in Santa Clara County, were collected by Santa Clara County Agricultural officials and sent to the CDFA Plant Pathology Laboratory, for diagnosis.  DNA was extracted from soil baits and determined to be 100% similar to the pathogen, Phytophthora quercina, by Suzanne Rooney-Latham, CDFA plant pathologist.   DNA samples were sent by CDFA to the USDA APHIS PPQ CPHST Laboratory in Beltsville, Maryland, and on June 10, 2016, USDA confirmed the identity of P. quercina.  This detection marked the first confirmed presence and new record of the pathogen in the United States (USDA APHIS PPQ, 2016).  Currently, P. quercina has a temporary ‘Q’ rating in California.  The risk of introduction and establishment of this pathogen in California is assessed and a permanent rating is proposed herein.

History & Status:

Background: Oak decline is a serious and frequently recurring disease in Europe since the beginning of the twentieth century (Jung et al., 1999).  During the early 1990s, several Phytophthora spp. including a newly described P. quercina were found to be associated with oak decline and root rot in central and southern Europe.  In pathogenicity tests on oak, Quercus robur, P. quercina was found to be most pathogenic in comparison to the other associated Phytophthora species (Jung et al., 1999).  Subsequent reports associated P. quercina with oak decline from Turkey, Austria, and Italy (Balcý & Halmschlager, 2002a, 2002b; Vettraino et al., 2002).  Phytophthora quercina is an oomycete, and Cooke et al, (1999) provided molecular evidence that verified P. quercina as a distinct species.

Phytophthora quercina was recently detected in soil samples obtained from the root zone area of diseased valley oak trees grown at a California restoration site.  The USDA marked this detection as the first known confirmation of the pathogen in the United States.  Details are given above in “Initiating Event”.   The species was reported in 2007 on being detected in a soil bait around a declining oak tree in Central Missouri (Schwingle et al., 2007), however, the identification was not confirmed by USDA APHIS and there have not been any further publications on the species in the USA (USDA APHIS PPQ, 2016).

Hosts: Quercus spp. (oak): Q. cerris, Q. hartwissiana, Q. frainetto, Q. ilex, Q. robur, Q. petraea, Q. pubescens, Q. suber, and Q. vulcanica (Balcý & Halmschlager, 2002a, 2002b; EPPO, 2016; Farr & Rossman, 2016; NPRG, 2010).

Symptoms:  Phytophthora quercina, along with several other Phytophthora species, occur in oak decline stands in Europe (Balcý & Halmschlager, 2002; Jung et al., 2008).  Above ground symptoms of oak decline include dieback of branches and parts of the crown, formation of epicormic shoots, high transparency of the crown, yellowing and wilting of leaves and tarry exudates from the bark.  These symptoms are indicative of water stress and poor nutrition (Jung et al., 2008).  Below ground symptoms in declining European oak species resulted in deterioration of oak fine roots, including a progressive destruction of the fine root system, dieback of long roots, and necrotic lesions on suberized and non-suberized roots.  Although these symptoms occur in both healthy and declining oaks, the damage is generally more severe in declining oaks (Jung, et al., 2008).  The pathogen also causes abnormal root branching, and produces elicitins, viz. toxic substances that induce wilting and yellowing and leaf necrosis in declining oaks (NPRG, 2010).   In pathogenicity test, P. quercina-infected Quercus robur (oak) seedlings with severe root rot showed wilting and necrosis of leaves, root necrosis and dieback of the shoot. Under natural conditions, mature Q. robur trees showed reductions in fine root length (Jung et al., 1999).

Damage Potential:  The extent of damage caused by Phytophthora quercina has not been reported.  Several Phytophthora species including P. quercina are associated with oak decline disease.  However, P. quercina has been shown to be pathogenic to some European Quercus species, such as Q. robur (Jung et al., 1999), and to be one of the most aggressive and most common species found in reported surveys in Europe (Jung et al., 1999, 2008; Balcý and Halmschlager 2002a, 2002b).  In Italy, P. quercina was the only species significantly associated with declining oak trees (Vettraino et al., 2002).

Disease Cycle: Although present in roots and rhizosphere soil of oaks exhibiting symptoms of oak decline, the precise role of Phytophthora quercina in this disease is not known and very little is known about its biology.  Jung et al. (2008), reported that at least two different complex diseases are referred to as ‘oak decline’.  On sites with a mean soil pH 3.5 or greater and sandy-loam to clayey soil texture, Phytophthora species were commonly isolated from rhizosphere soil, and highly significant correlations existed between crown transparency and various root parameters.  However, in sites with a mean soil pH less than 3.9 and sandy to sandy-loam soils, Phytophthora species were not found. Biotic and abiotic stress factors such as drought and frost, may often act synergistically and accelerate Phytophthora-mediated decline of oaks.

Generally, species of Phytophthora that cause root and stem rots survive cold winters or hot and dry summers as thick-walled, resting spores (oospores and chlamydospores) or mycelium in infected roots, stems or soil.  During spring, the oospores and chlamydospores germinate to produce motile spores (zoospores) that swim around in soil water and roots of susceptible hosts. The pathogen infects the host at the soil line causing water soaking and darkening of the trunk bark. This infected area enlarges and may encircle the entire stem of small plants which wilt and eventually die.  On large plants, the infected, necrotic area may be on one side of the stem and become a depressed canker below the level of the healthy bark.  Collar rot canker may spread down the root system. Roots are invaded at the crown area or at ground level.   Mycelium and zoospores grow in abundance in cool, wet weather causing damage where the soil is too wet for normal growth of susceptible plants and low temperatures (15-23°C) prevail (Agrios, 2005). Phytophthora quercina is homothallic.  Optimum growth in culture is at 20°C and 25°C, however, it is able to grow at temperatures as high as 27.5°C (Jung et al., 1999; Barzanti et al., 2001).

Transmission: Like most Phytophthora species, P. quercina is soil-borne and water-borne and may be spread to non-infected sites through infected plants, nursery and planting stock, and seedlings, soil, run-off and splash irrigation and rain water, and contaminated cultivation equipment, tools, and boots.

Worldwide Distribution: Asia: Turkey; Europe: Austria, Belgium, France, Germany, Hungary, Italy, Luxemberg, Montenegro, Serbia, Spain, Sweden, Scotland, United Kingdom: North America: USA (California) (Balcý & Halmschlager, 2002a, 2002b; EPPO, 2016; Farr & Rossman, 2016; Jung et al., 1999; NPRG, 2010).

Official Control: Phytophthora quercina is listed as an exotic forest pathogen in USDA APHIS PPQ Federal New Pest Response Guidelines for Phytophthora species (NPRG, 2010).  The species has been on the North American Plant Protection Organization (NAPPO) alert list since 2002.  Currently, P. quercina has a temporary ‘Q’ rating in California.

California Distribution: Phytophthora quercina has been detected in a California native plant restoration site in a Santa Clara County.

California Interceptions: None.

The risk that Phytophthora quercina would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Evaluate and score the pest for suitability of hosts and climate to establish in California.  Score:

Low (1) not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

Risk is High (3) – Although Phytophthora quercina has been reported to be associated primarily with European oak species in Europe, its recent detection in valley oak rhizosphere soil extends the capability of this pathogen to be associated with California native oaks.  Valley oak is endemic to California and present throughout the State.  Thereby, making it likely for the pathogen to establish a widespread distribution in California.  It is not yet known, but probable that other California native oaks may be affected by P. quercina.

2) Pest Host Range: Evaluate and score the pest as it pertains to host range.  Score:

Low (1) has a very limited host range

Medium (2) has a moderate host range

High (3) has a wide host range

Risk is Low (1)Phytophthora quercina has a host range limited to Quercus spp. that includes Q. cerris, Q. hartwissiana, Q. frainetto, Q. ilex, Q. robur, Q. petraea, Q. pubescens, Q. suber, and Q. vulcanica.  In California, it was found to be associated with Q. lobata.

3) Pest Dispersal Potential: Evaluate and score the pest for dispersal potential using these criteria.  Score:

Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

Risk is High (3) Phytophthora quercina is soil-borne and water-borne and therefore, primarily spread artificially via infested soils, plants, nursery and planting stock, seedlings, run-off and splash irrigation water, cultivation equipment and tools, and boots that may spread contaminated soil and plant materials to non-infected sites.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below.  Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

Risk is Medium (2)The extent of damage caused by Phytophthora quercina has not been reported.  Several Phytophthora species including P. quercina are associated with oak decline disease. In Europe, P. quercina was most commonly associated with the disease than were other Phytophthora species.  The pathogen could impact nursery-produced oaks thereby triggering possible loss of markets and requiring changes in normal cultural practices to avoid spread of the soil and water-borne pathogen.  

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.  Score:

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species

C. The pest could impact threatened or endangered species by disrupting critical habitats

D. The pest could trigger additional official or private treatment programs,

E. The pest could significantly impact cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact:

Low (1) causes none of the above to occur

Medium (2) causes one of the above to occur

High (3) causes two or more of the above to occur

 Risk is High (3) – Phytophthora quercina is listed as an exotic forest pathogen in USDA APHIS PPQ Federal New Pest Response Guidelines for Phytophthora species (NPRG, 2010).  The species has been on the North American Plant Protection Organization (NAPPO) alert list since 2002.  Although the extent of damage potentially caused by this pathogen is not yet known, its spread within California could cause serious impact on native oaks, disrupt critical habitats by killing critical species necessary for species diversity and soil stability, necessitate official or private treatment programs to preserve critical, rare, or endangered species, and significantly impact cultural practices, home/urban and/or ornamental plantings.

Consequences of Introduction to California for Phytophthora quercina:

Add up the total score and include it here

Low = 5-8 points

Medium = 9-12 points

High = 13-17 points

Total points obtained on evaluation of consequences of introduction of Phytophthora quercina to California = (12).

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Low (-1).

Final Score

The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 11.

Uncertainties:

The extent of economic damage caused by Phytophthora quercina is not known. Also not known is the exact role of the pathogen in oak decline disease, and details of the biology of the pathogen species.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Phytophthora quercina is B.

References:

Agrios, G. N.  2005.  Plant Pathology fifth edition.  Elsevier Academic Press, Massachusetts, USA.  922 p.

Balcý, Y. and E. Halmschlager.  2002a. First confirmation of Phytophthora quercina on oaks in Asia.  Plant Disease 86:442. http://dx.doi.org/10.1094/PDIS.2002.86.4.442C

Balcý, Y. and E. Halmschlager.  2002b. First report of Phytophthora quercina in Austria.  New Disease Reports volume 6, August 2002-January 2003. http://www.bspp.org.uk/ndr/jan2003/2002-28.htm

Barzanti, G. P., P. Capretti, and A. Ragazzi. 2001. Characteristics of some Phytophthora

species isolated from oak forest soils in central and northern Italy.

Phytopathologia Mediterranea 40(2): 149-156.

Cooke, D.E.L., T. Jung, N. A. Williams, R. Schubert, G. Bahnweg, W. Oswald, and J. M. Duncan.  1999.  Molecular evidence supports Phytophthora quercina as a distinct species. Mycological Research, 103:799-804.

EPPO.  2016.  Phytophthora quercina (PHYTQU).  New PQR database.  Paris, France:  European and Mediterranean Plant Protection Organization.  http://newpqr.eppo.int

Farr, D.F., & A. Y. Rossman.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved January 28, 2016, from http://nt.ars-grin.gov/fungaldatabases/

Jung, T., D. E. L. Cooke, H. Blaschke, J. M. Duncan, and W. Oswald. 1999.  Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol. Res. 103: 785-798.

Jung, T., H. Blaschke and W. Oßwald.  2008.  Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease.  Plant Pathology, 49:706-718. DOI: 10.1046/j.1365-3059.2000.00521.x

Schwingle, B. W., J. Juzqik, J. Eggers, and B. Moltzan.  2007.  Phytophthora species in soils associated with declining and nondeclining oaks in Missouri Forests.  Plant Disease 91:633. http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-91-5-0633A

NPRG.  2010.  New Pest Response Guidelines: Phytophthora species in the Environment and Nursery Settings. USDA MRP APHIS PPQ Cooperating State Departments of Agriculture, July 09 2010. 229 pages.

USDA APHIS PPQ.  2016.  Email from J. H. Bowers, National Survey Coordinator National Policy Manager, Cooperative Agricultural Pest Survey, USDA, APHIS, PPQ, PHP, to Nick Condos, Director, CDFA, sent Friday, June 10, 2016, 11:56 am.

Vetrraino, A. M., G. P. Barzanti, M. C. Bianco, A. Ragazzi, P. Capretti, E. Paoletti, N. Luisi, N. Anselmi, and A. Vannini.  2002.  Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees.  Forest Pathology, 32:19-28.  DOI: 10.1046/j.1439-0329.2002.00264.x

Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: (916) 262-1110, plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment

Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: B 


Posted by ls

Colletotrichum fructicola Prihastuti, L. Cai & K. D. Hyde, 2009

California Pest Rating for
Colletotrichum fructicola Prihastuti, L. Cai & K. D. Hyde, 2009
Pest Rating:  B

PEST RATING PROFILE
Initiating Event:

On March 29, 2016, a shipment of Chinese evergreen (Aglaonema sp.)  cuttings showing leaf spotting symptoms and destined to a nursery in San Luis Obispo County, was intercepted and sampled by San Luis Obispo County Agricultural officials.  The shipment had originated in Costa Rica.  Diseased plant samples were sent to the CDFA Plant Diagnostics Branch for diagnosis.  Suzanne Latham, CDFA plant pathologist, identified the anthracnose and fruit rot pathogen, Colletotrichum fructicola, as the cause for the disease.  This species was first detected within California on August 26, 2015, in mango fruit shipped from Puerto Rico and intercepted by the California Dog Team.  The fruit shipment was destined to a private citizen in Sacramento County.  The identity of the fungal pathogen was confirmed on August 18, 2015, by the USDA National Identification Services at Beltsville, Maryland.  Several detections of C. fructicola followed the initial find: on August 14, 2015, in Cymbidium orchid leaves from a nursery in San Diego County; on August 19, 2015, on mango fruit from Florida and destined for Stanislaus County; on November 9, 2015, in Dracaena massangeana cuttings from Costa Rica and destined to a nursery in San Diego County; on March 15, 2016, in black sapote fruit from Florida and destined to a private citizen in Los Angeles County.  In all these cases, subsequent to the detection of C. fructicola, all fruit and plant shipments/nursery stock were either destroyed or rejected from entering California.  Currently, C. fructicola has a temporary ‘Q’ rating.  The risk of introduction and establishment of this pathogen in California is assessed and a permanent rating is proposed herein.

History & Status:

Background:  Colletotrichum fructicola was originally reported to be associated with coffee berries (Coffea arabica) in northern Thailand (Prihastuti et al., 2009) and as a leaf endophyte from Central America (as C. ignotum). Since then, C. fructicola has been found on several tropical and subtropical hosts from diverse geographical regions. In the USA, C. fructicola was reported in 2012 from Florida and North Carolina on strawberry crown and apple fruit respectively (Weir et al., 2012). During 2015-16, the pathogen was also detected in California associated with several quarantine nursery plant/fruit shipments and regulatory nursery samples.

The pathogen is a distinct fungus species belonging to the vastly morphological and physiological variable C. gloeosporioides complex and is generally identified from other species of the complex only by gene sequencing.  However, C. ignotum and Glomerella cingulata var. minor are synonyms of C. fructicola (Prihastuti et al., 2009; Rojas et al., 2010; Weir et al, 2012).

Hosts: Aglaonema sp. (Chinese evergreen), Annona reticulata (custard apple), A. squamosa (sugar apples), Artocarpus heterophyllus (jackfruit), Coffea arabica (coffee), Coffea sp., Camellia japonica (Japanese camellia), Camellia sinensis (tea), Camellia sp., Capsicum frutescens (chili pepper), Carica papaya (papaya), Cestrum parqui (green cestrum), Citrullus vulgaris (watermelon), Citrus limon (lemon), C. reticulata (Mandarin orange), C. sinensis (sweet orange), Citrus x paradisi, Crinum asiaticum (spider lily), Cucumis sativus (cucumber), Cymbidium sp. (orchid), Dendrobium sp. (orchid), Dioscorea alata (purple yam), D. rotundata (white yam), Diospyros nigra (black sapote), Dracaena massangeana (corn plant/cornstalk Dracaena), Epidendrum sp. (orchid), Ficus carica (common fig), F. edulis (fig), F. pumila (creeping fig), Fortunella margarita (oval kumquat) Fragaria ananassa (strawberry), Limonium sinuatum (statice), Limonium sp., Lobularia maritima (sweet alyssum), Lupinus angustifolius (blue lupine), Lycopersicon esculentum (tomato), Lycium chinensis (boxthorn), Malus domestica (apple), M. sylvestris (crab apple), Mangifera indica (mango), Matthiola incana (stock), Medicago polymorpha (burclover), Musa acuminata (edible banana), Nerium oleander (oleander), Nicotiana tabacum (tobacco), Passiflora edulis (passion fruit), Persea americana (avocado), Phalaenopsis sp. (moth orchid), Phormium tenax (flax), Portulaca oleracea (little hogweed/common purslane), Psidium guajava (guava), Pyrus bretschneideri (Chinese white pear), P. pyrifolia (pear), Saccolabium sp. (orchid), Tetragastris panamensis, Theobroma cacao (cocoa), Vanda sp. (orchid) (Farr & Rossman, 2016; Li et al., 2014; Prihastuti et al., 2009; Wang et al., 2016, Weir et al., 2012; Zhang et al., 2015).

Symptoms:  Generally, Colletotrichum-infected host plants exhibit symptoms of anthracnose which include dark brown leaf, stem and fruit spots, fruit rot, and wilting of leaves which often result in dieback and reduction in plant quality.  In China, early stages of the disease in pear was characterized by the presence of black spots on young fruit which was always followed by severe bitter rot in matured fruit, and less than 1 mm black spots on leaves resulting in severe defoliation and loss of fruit (Jiang et al., 2014; Zhang et al., 2015). Anthracnose symptoms on tobacco leaves initiate as discrete, yellow-green spots which coalesce into larger lesions with white centers and dark brown margins (Wang et al., 2016).

Damage Potential:  Anthracnose disease caused by Colletotrichum fructicola can result in reduced plant quality and growth, fruit production and marketability.   In China, sudden outbreaks of the disease resulted in severe defoliation and a loss of pear fruit quality and yield resulting in fresh market losses ranging from 60-90% which, in 2008, were estimated at US$150 million. (Li, et al., 2013; Zhang, et al., 2015).  In 2014, also in China, 90% of tobacco leaves on ~2% plants in a 3-ha commercial tobacco field were infected with C. fructicola (Wang, et al., 2016).  In California, nursery production of potted host plants or in greenhouses are particularly at risk as nursery conditions are often conducive to infection by Colletotrichum species.  In California’s cultivated fields, disease development may be sporadic as it is affected by levels of pathogen inoculum and environmental conditions.

Disease Cycle:  It is likely that Colletotrichum fructicola has a similar life cycle to that of other Colletotrichum species and survives between crops during winter as mycelium on plant residue in soil, on infected plants, and on seeds.  During active growth, the pathogen produces masses of hyphae (stromata) which bear conidiophores, on the plant surface. Conidia (spores) are produced at the tips of the conidiophores and disseminated by wind, rain, cultivation tools, equipment, and field workers.   Conidia are transmitted to host plants.  Humid, wet, rainy weather is necessary for infection to occur.  These requirements in particular may limit the occurrence of the pathogen in California fields and subsequently, the pathogen may be more of a problem under controlled environments of greenhouses.  Conidia germinate, penetrate host tissue by means of specialized hyphae (appresoria) and invade host tissue.

Transmission:  Wind, wind-driven rain, cultivation tools, and human contact.

Worldwide Distribution: Asia: China, India, Israel, Japan, Korea, Thailand; Africa: Angola, Nigeria; Europe: United Kingdom; North America: Canada, Panama, USA (California, Florida, North Carolina); Australia (Farr & Rossman, 2016; Li et al., 2014; Prihastuti et al., 2009; Wang et al., 2016, Weir et al., 2012; Zhang et al., 2015).

Official Control In California C. fructicola is an actionable, Q-rated pathogen, and infected plant material is subject to destruction or rejection.

California Distribution: Colletotrichum fructicola was detected in a nursery in San Diego County (see “Initiating Event”).

California Interceptions:  During 2015-16, Colletotrichum fructicola has been intercepted several times mainly in shipments of mango and black sapote fruits, Dracaena and Chinese evergreen cuttings that originated in Costa Rica, Puerto Rico, and Florida (see ‘Initiating event’).

The risk Colletotrichum fructicola would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Medium (2) – Similar to other species of Colletotrichum, C. fructicola requires humid, wet, rainy weather for conidia to infect host plants. This environmental requirement may limit the ability of the pathogen to fully establish and spread under dry field conditions in California.

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

High (3) has a wide host range.

Risk is High (3) The host range of Colletotrichum fructicola is relatively wide and diverse and includes several tropical and subtropical plants, as well as agricultural and ornamental crops grown in California.

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

Risk is High (3) – The pathogen has high reproductive potential and conidia are produced successively.  They are transmitted by wind, wind-driven rain, cultivation tools, and human contact however conidial germination and plant infection require long, wet periods.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A.  The pest could lower crop yield.

B.  The pest could lower crop value (includes increasing crop production costs).

C.  The pest could trigger the loss of markets (includes quarantines).

D.  The pest could negatively change normal cultural practices.

E.  The pest can vector, or is vectored, by another pestiferous organism.

F.  The organism is injurious or poisonous to agriculturally important animals.

G.  The organism can interfere with the delivery or supply of water for agricultural uses.

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

Risk is High (3) –Under suitable, wet climates, the pathogen could lower plant growth, fruit production and value and trigger the loss of markets.

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

The pest could directly affect threatened or endangered species.

The pest could impact threatened or endangered species by disrupting critical habitats.

The pest could trigger additional official or private treatment programs.

The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Risk is Medium (2) – The pathogen could significantly impact cultural practices or home garden plantings.

Consequences of Introduction to California for Colletotrichum fructicola:

Add up the total score and include it here. (Score)

-Low = 5-8 points

-Medium = 9-12 points

High = 13-15 points

Total points obtained on evaluation of consequences of introduction of Colletotrichum fructicola to California = (13).

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Low (-1) Colletotrichum fructicola was detected in a nursery in San Diego County.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 12.

Uncertainty:

Periodic surveys need to be conducted to confirm the presence/absence of C. fructicola in commercial and private production regions within California.  Subsequent results may alter the herein proposed rating for the pathogen.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for the anthracnose pathogen, Colletotrichum fructicola is B.

References:

CABI.  2016.  Colletotrichum fructicola basic datasheet report.  Crop Protection Compendium.  www.cabi.org/cpc/

Farr, D. F., & A. Y. Rossman.  Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. Retrieved April 3, 2016, from

http://nt.ars-grin.gov/fungaldatabases/

J. Jiang, Zhai, H. Li, Z. Wang, Y. Chen, N. Hong, G. Wang, G. N. Chofong, and W. Xu. 2014. Identification and characterization of Colletotrichum fructicola causing black spots on young fruits related to bitter rot of pear (Pyrus bretschneideri Rehd.) in China.  Crop Protection 58:41-48.

Li, H.N., Jiang, J.J., Hong, N., Wang, G.-P., and Xu, W.X. 2013. First Report of Colletotrichum fructicola Causing Bitter Rot of Pear (Pyrus bretschneideri) in China. Plant Disease 97:1000. http://dx.doi.org/10.1094/PDIS-01-13-0084-PDN.

Prihastuti, H., L. Cai, H. Chen, E. H. C. McKenzie, and K. D. Hyde.  2009. Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Diversity 39: 89-109.

Wang, H. C., Y. F. Huang, Q. Chen, M. S. Wang, H. Q. Xia, S. H. Shang, and C. Q. Zhang.  2016.  Anthracnose caused by Colletotrichum fructicola on tobacco (Nicotiana tabacum) in China.  Plant Disease (posted on line March 8, 2016). http://dx.doi.org/10.1094/PDIS-06-15-0724-PDN.

Weir, B. S., P. R. Johnston, and U. Damm.  2012.  The Colletotrichum gloeosporioides species complex.  Studies in Mycology, 73:115-180. DOI:10.3114/sim0011.

P. F. Zhang, L. F. Zhai, X. K. Zhang, X. Z. Huang, N. Hong, W. Xu, and G. Wang. Characterization of Colletotrichum fructicola, a new causal agent of leaf black spot disease of sandy pear (Pyrus pyrifolia).  European Journal of Plant Pathology 143:651-662.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment

Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating:  B


Posted by ls

Ascochyta aquilegiae (Rabenh.) Boerema, Fruyter & Noorder, 1997

California Pest Rating for
Ascochyta fungi (photo source: forestryimages.org)
Ascochyta fungi; Ascochyta spp. Lib.
Ascochyta aquilegiae (Rabenh.) Boerema, Fruyter & Noorder, 1997
Pest Rating:  C

PEST RATING PROFILE
Initiating Event:

On March 28, 2016, a sample of diseased Aquilegia sp. (columbine) plants showing symptoms of dieback, was voluntarily submitted by a nursery in Contra Costa County to the CDFA Plant Pathology Laboratory for disease diagnosis.  Suzanne Latham, CDFA plant pathologist, identified the associated fungus plant pathogen, Ascochyta aquilegiae, as the cause for the disease.  The pathogen was assigned a temporary “Z” rating as it has been reported earlier in California and is considered widely distributed.  That rating is reassessed here and a permanent rating is proposed.

History & Status:

BackgroundAscochyta aquilegiae causes dark leaf spots, stem lesions, and crown rots in plants belonging to the family Ranunculaceae, including several species in the genera Aquilegia and Delphinium.  The fungal species has undergone several name changes in fungal taxonomy and is known by several synonyms including, Stagonosporopsis aquilegiae, Actinonema aquilegiae, Ascochyta laskarisii, Diplodina delphinii, Phoma aquilegiicola, Phyllosticta aquilegiae, and Phyllosticta aquilegicola (Farr & Rossman, 2016).

Disease development and spreadAscochyta aquilegiae attack primarily plant leaves by means of spores (conidia) and, following infection, produce numerous condia that are spread to other plants by wind, wind-blown rain, water, and insects.  Conditions that favor prolonged leaf-wetness in warm climates often favor development of the pathogen. The pathogen is also transmitted to non-infected sites through the movement of infected plant materials and debris. The fungus overwinters primarily in fallen leaves or infected leaf debris, or as mycelium in infected tissues of perennial plants (Agrios, 2005; Pscheidt & Ocamb, 2016a, 2016b).

Hosts: Aquilegia spp. (columbine), Aconitum spp. (aconite/wolf’s bane), Clematis sp. (clematis), Consolida spp. (larkspur), Coptis chinensis (goldthread), Delphinium spp. (delphinium/larkspur) (Farr & Rossman, 2016; French, 1989; Garibaldi et al., 2011; Yu et al., 2014).

Symptoms and damage potential: Ascochyta aquilegiae causes leaf spots, stem cankers and crown rots.  Leaf lesions of infected Aquilegia and Coptis plants are extensive, usually beginning at the leaf margin and extending to the central leaf blade eventually coalescing to cover entire leaf, irregular, brown to black, necrotic, slightly sunken with a well-defined border and surrounded by a violet-brown halo.   As the disease progresses, stems are also affected causing death of the apical part of the plant (Garibaldi et al., 2011; Yu et al., 2014). In Delphinium spp., petioles develop brown water-soaked lesions near the base of succulent plants.  Less vigorous plants show black local lesions on the petiole.  Inflorescences and seed pods develop a blackish decay.  Generally, crown rot may be found in plants two years or older (Pscheidt & Ocamb, 2016a, 2016b).  Small, dark brown to black fungal fruiting bodies (pycnidia) may be present in the lesions.

Damage Potential:  While information on the economic importance of the disease caused by Ascochyta aquilegiae is limited, the development of leaf spots, stem cankers and crown rots in infected plants may result in reduced plant production, yield, and marketability of columbine and other host plants used in residential gardens and commercial landscapes.  Plants are particularly at risk of pathogen infection in warm and moist natural climates of California, and in nursery-controlled productions.  In China, A. aquilegiae caused yield losses of 15-75% in gold thread, an important herbaceous plant used in traditional Chinese medicine (Yu et al., 2014).

Worldwide Distribution:  Asia:  Armenia, China, Japan, Russia; Africa: South Africa, Zimbabwe, Europe: Bulgaria, Czechoslovakia, Germany, Italy, Netherlands, Poland, Scotland, United Kingdom; North America: Canada, USA; Oceania: New Zealand.  It is widespread within the USA in Alaska, California, Connecticut, Iowa, Idaho, Maryland, New Jersey, New York, Oregon, Pennsylvania, Texas, Washington, Wisconsin (Farr & Rossman, 2016; Garibaldi et al., 2011; Pscheidt & Ocamb, 2016a, 2016b; Yu et al., 2014).

Official Control: None reported. Currently, the pathogen has a temporary ‘Z’ rating in California, which indicates that it is a previously unrated organism of known economic and/or environmental detriment but generally distributed in the state.

California Distribution: Ascochyta aquilegiae has been detected in California’s northern and southern coastal counties which include: Del Norte, Humboldt, Mendocino, Sonoma, Marin, San Francisco, San Mateo, Santa Cruz, Alameda, Santa Clara, San Benito, Monterey, San Luis Obispo, Santa Barbara, Ventura, Los Angeles, Orange, and San Diego Counties (French, 1989).

California Interceptions: None reported.

The risk Ascochyta aquilegiae would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California. Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

Risk is Medium (2): Conditions that favor prolonged leaf-wetness in warm climates often favor development of Ascochyta aquilegiae.  The pathogen is already known to be present in northern and southern coastal counties in California.

2) Known Pest Host Range: Evaluate the host range of the pest. Score:

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

Risk is Low (1): Presently, the host range is limited to few species within Ranunculaceae. 

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

Risk is Medium (2): Ascochyta aquilegiae produces numerous condia the infect plants, however, to spread to other plants, they are dependent on wind, wind-blown rain, water, and insects.  Furthermore, prolonged leaf-wetness in warm climates is needed to favor development of the pathogen in plants. The pathogen is also transmitted to non-infected sites through the movement of infected plant materials and debris.

4) Economic Impact: Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

– Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

Risk is Medium (2): While information on the economic importance of the disease caused by Ascochyta aquilegiae is limited, the development of leaf spots, stem cankers and crown rots in infected plants may result in reduced plant production value and marketability of columbine and other host plants used in residential gardens and commercial landscapes.  Plants are particularly at risk of pathogen infection in warm and moist natural climates of California, and in nursery-controlled productions

5) Environmental Impact: Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Risk is High (3): Commercial landscape and home garden plantings could be negatively impacted if infected by Ascochyta aquilegiae under favorable moist climate conditions.  The pathogen could directly affect certain species of larkspur, namely, Delphinium bakeri (Baker’s larkspur), D. hesperium ssp. cuyamacae (Cuyanaca larkspur), D. luteum (golden larkspur), and D. variegatum ssp. kinkiense (San Clemente Island larkspur) included in the ‘State and Federally Listed Endangered, Threatened, and Rare Plants of California, July 2015’ thereby, potentially lowering biodiversity, natural communities or ecosystem processes.

Consequences of Introduction to California for Ascochyta aquilegiae:

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 10

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Medium (-2): Presently, Ascochyta aquilegiae is known to be present in northern and southern coastal counties in California.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 8.

Uncertainty:   

The impact and spread of this pathogen to other intrastate regions where host species are grown, is not known.  Future reports of the detection of P. digitalidis in California could lower the overall score for the pathogen although it is unlikely to affect its final rating.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Ascochyta aquilegiae is C.

References:

Agrios, G. N.  2005.  Plant Pathology (Fifth Edition).  Elsevier Academic Press, USA.  922 p.

Farr, D.F., & Rossman, A.Y. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved April 18, 2016, from http://nt.ars-grin.gov/fungaldatabases/.

Garibaldi, A., D. Bertetti, M. T. Amatulli, and M. L. Gullino.  2011.  First report of leaf spot of fan columbine (Aquilegia flabellata) caused by Phoma aquilegiicola in Italy.  Plant Disease 95:880.  http://dx.doi.org/10.1094/PDIS-05-10-0391.

Pscheidt, J.W., and Ocamb, C.M.  2016a. Columbine (Aquilegia spp.) leaf spots.  Pacific Northwest Plant Disease Management Handbook. © Oregon State University. pnwhandbooks.org/plantdisease/node/3020. http://pnwhandbooks.org/plantdisease/columbine-aquile.

Pscheidt, J.W., and Ocamb, C.M.  2016b. Delphinium – leaf spot and crown rot.  Pacific Northwest Plant Disease Management Handbook. © Oregon State University. pnwhandbooks.org/plantdisease/node/3118.  http://pnwhandbooks.org/plantdisease/delphinium-leaf-spot-and-crown-rot.

Yu, Y., Z. C. Su, W. Z. Tan, and C. W. Bi.  2014.  First report of a leaf spot on goldthread (Coptis chinensis) caused by Phoma aquilegiicola in China. Plant Disease 98:1428. http://dx.doi.org/10.1094/PDIS-01-14-0010-PDN.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment

Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating:  C


Posted by ls