Category Archives: Plant Pathogens

Plant Pathology (plant diseases)

Grapevine Pinot gris Virus (GPGV)

California Pest Rating  for
Grapevine Pinot gris Virus (GPGV)
Pest Rating: B

PEST RATING PROFILE

Initiating Event:   

A pest risk assessment and rating for Grapevine pinot gris virus (GPGV) was recently requested by Joshua Kress, CDFA Pest Exclusion Branch, in response to notification received on January 24, 2018, from Foundation Plant Service (FPS), on the detection of GPGV in their Foundation grapevine plants.  The risk of infestation of GPGV in California is evaluated and a permanent rating is herein proposed. 

History & Status:

Background: Although symptoms of stunting, chlorotic mottling, and leaf deformation had been observed on V. vinifera ‘Pinot gris’, in Trentino, North Italy since 2003, it was not until 2012 that Grapevine pinot gris was first detected by deep sequencing in one symptomatic and one symptomless grapevine, Vitis vinifera cv. Pinot gris in Northern Italy. In this initial study, GPGV was associated with field symptoms of chlorotic mottling and leaf deformation, reduced yield and low quality of berries, however the plant was also associated with several other viruses and viroids.  Furthermore, since GPGV was found in both symptomatic and symptomless plants from three different grape cultivars in a limited field survey, the virus could not be directly associated with the observed symptoms (Giampetruzzi et al., 2012; Glasa et al., 2014). This was further confirmed by Saldarelli et al. (2013) who reported 70% of GPGV-infected asymptomatic veins in cultivars Traminer and Pinot gris vineyards in Italy.  Bianchi et al. (2015) also detected GPGV in symptomatic and asymptomatic plants over a 3-year period in a field survey of productive vineyards and scion mother plant nurseries in Italy, however, the mean quantity of the virus was significantly higher in symptomatic vines than in asymptomatic plants. Consequently, a critical level or quantity of virus could not be associated with symptom expression.  Scientists in Italy determined that GPGV isolates that produce symptoms can be genetically differentiated from those that are asymptomatic (Saldarelli et al., 2015).

Grapevine pinot gris virus belongs to the genus Trichovirus in the family Betaflexiviridae.  Its full-length sequence was described and shown to be phylogenetically closely related to, yet molecularly different from Grapevine berry inner necrosis virus, another Trichovirus which was found in Japan and is transmitted by eriophyid mites (Giampetruzzi et al., 2012).  Since its original description in Italy, GPGV has been detected from symptomatic and asymptomatic grapevine cultivars in several countries in Europe and Asia, and few in North America, South America and Australia (see: ‘Worldwide Distribution’).

Grapevine Pinot gris virus (GPGV) was detected in California grapevine in Napa Valley and diagnosed by a testing service lab in Yolo County.  An informal report of this detection was made in 2015 (Rieger, 2015) and in a ‘list of pathogens report’ submitted by a testing service lab to the CDFA.  A formal first report of GPGV infecting grapevine was made in 2016 (Rwahnih et al., 2016) and marked a first detection of GPGV in the United States.  In 2016, Rwahnih and other scientists at the Foundation Plant Services screened 2,014 vines, including 23 vines of Pinot gris for the possible presence and prevalence of GPGV in the collections of FPS, which are the source of all certified grapevine plants produced in California.  Of all the vines tested, only one relatively rare, asymptomatic vine variety ‘Touriga Nacional” was found positive for GPGV. This vine had been imported from Portugal in 1981.  The risk of GPGV spread in commercial vineyards was considered low, given the very low prevalence of the pathogen in the FPS collection, however, the need for a large-scale survey of commercial vineyards in California was emphasized, as well as, the need for research to evaluate the effect of the virus on grapevine performance and wine quality.  Since cv ‘Touriga Nacional’ is rarely used in commercial vineyards, Angelini et al., (2016) molecularly surveyed 96 grapevine samples from four commercial wine grape vineyards in Napa Valley, California and reported the presence of GPGV in three cultivars, ‘Chardonnay’, ‘Cabernet Sauvignon’, and ‘Cabernet Franc’.

Grapevine pinot gris virus was recently detected in Foundation grapevine plants at FPS (see ‘Initiating Event’).  Subsequently, FPS removed all source vines from the Foundation vineyard and initiated monitoring of the site with additional testing implemented to detect and destroy any further detection and contain possible spread of the pathogen (personal communication: M. Al Rwahnih, Foundation Plant Services).

HostsGrapevine pinot gris virus has been found in at least 28 wine and table grape varieties of Vitis vinifera and hybrids. including Pinot gris, Pinot noir, Traminer, Chardonnay, Merlot, Chardonnay, Cabernet Franc, Cabernet Sauvignon, Carmenere Glera (Prosecco), Sauvignon Blanc and Shiraz (AWRI, 2018).

Symptoms:   Grapevines infected with GPGV may be symptomatic or asymptomatic.    Furthermore, specific symptoms caused by GPGV have been difficult to assign as GPGV-infected grapevines were infected with other viruses. Because of this, definitive symptoms have not been attributed to GPGV alone.  Symptoms putatively associated with GPGV include chlorotic mottling, leaf deformation, delayed bud-burst, stunted growth, reduced yields and low quality of berries with increased acidity (Saldarelli et al., 2015; AWRI, 2018).

Damage Potential:  The complete impact of GPGV on grapevine health is currently unknown and further research is need in this area (AWRI, 2018).  In Europe and Asia, GPGV and other concomitant viruses infesting grapevines have been associated with field observations of reduced yield, poor fruit set, poor quality and inner necrosis of berries (Giampetruzzi et al., 2012).  In Slovenia, the disease was reported to cause considerable economic losses (Mavrič Pleško et al., 2014).  Presently, the risk of spread of GPGV is considered low and the distribution of the virus has only been reported from commercial vineyards within Napa County (Al Rwahnih et al., 2016; Angelini et al., 2016).

TransmissionGrapevine Pinot gris virus is spread through movement of infected plant propagative material and by graft transmission.  There is the possibility of GPGV transmission by the eriophyid mite Colomerus vitus, like the other grapevine-infecting Trichovirus, Grapevine berry inner necrosis virus, however, this has not been confirmed.  Colomerus vitus commonly infests grapevine and has been reported in California.

Worldwide Distribution: Asia: China, South Korea, Georgia, Pakistan; Europe: Bosnia, Croatia, Czech Republic, France, Germany, Greece, Italy, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Turkey, Ukraine; North America: Canada, USA (California); South America: Brazil; Oceania: Australia. (Al Rwahnih et al., 2016; Angelini et al., 2016; Beuve et al., 2015; CABI, 2018; Casati et al., 2015; EPPO, 2018; Fan et al., 2016; Gazel et al., 2016; Lou et al., 2016; Mavrič Pleško et al., 2014; Rasool et al., 2017; Reynard, et al., 2016; Rius-Garcia & Olmos, 2017; Wu et al., 2017; Xiao et al., 2016).

Official Control: None reported.

California Distribution:  Napa County.

California Interceptions: There are no CDFA records of detection of GPGV in quarantine shipments of plant material intercepted in California.

The risk Grapevine Pinot gris virus would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Grapevine pinot gris virus is expected to be able to establish wherever wine and table grape varieties are cultivated in California, and therefore, is likely to establish a wide spread distribution.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 3

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Grapevine pinot gris virus has been found in at least 28 wine and table grape varieties of Vitis vinifera and hybrids. including Pinot gris, Pinot noir, Traminer, Chardonnay, Merlot, Chardonnay, Cabernet Franc, Cabernet Sauvignon, Carmenere Glera (Prosecco), Sauvignon Blanc and Shiraz. It’s known pest host range is evaluated as very limited.

Evaluate the host range of the pest.

Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: GPGV is transmitted artificially through grafting and infested planting stock.  The involvement of a vector, an eriophyid mite Colomerus vitus, although likely, has not been confirmed. The virus has high reproduction within symptomatic and asymptomatic plants.  Therefore, a ‘High’ rating is given to this category.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: The economic impact of GPGV is not currently known and requires further research.  This is mainly due to evidence that the virus is present in both symptomatic and symptomless grape plants, and that other viruses and viroids may be present within the same plant infested by GPGV.  Nevertheless, putative symptoms of chlorotic mottling, leaf deformation, stunted growth, reduced yields and low quality of berries, have been associated with GPGV infestations.  This may relate to potentially lowering crop value and yield in production.  While the virus may be present in commercial vineyards of Chardonnay and Cabernet Sauvignon in California (Angelini et al., 2016), its risk of spread is considered low and its general impact on production is presently unknown.  Nursery production of grapevines may be affected.

Evaluate the economic impact of the pest to California using the criteria below.

Score: A, B

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

– Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: No impact to the environment is expected.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: None

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 1

Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Grapevine Pinot gris virus

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction of GPGV to California = Medium (10).

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Low (-1). Presently, Grapevine pinot gris virus has been reported only from Napa County.

Final Score

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 9. 

Uncertainty: 

Several aspects of Grapevine pinot gris virus are yet not known and require further research. In general, the impact of the virus on grape production, symptoms, prevalence and distribution within California are not fully known.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Grapevine Pinot gris virus is B.


References:

AWRI.  2018.  Grapevine pinot gris virus. Fact Sheet, Viticulture.  The Australian Wine Research Institute.  Updated February 2018.

Al Rwahnih, M., D. Golino, and A. Rowhani.  2016.  First report of Grapevine Pinot gris virus infecting grapevine in the United States.  Plant Disease (Posted online on March 4, 2016).  http://dx.doi.org/10.1094/PDIS-10-15-1235-PDN.

Angelini, E., N. Bertazzon, J. Montgomery, X. Wang, A. Zinkl, J. Stamp, and A. Wei.  2016.  Occurrence of Grapevine Pinot gris virus in commercial vineyards in the United States.  Plant Disease (Posted online on March 23, 2016): http://dx.doi.org/10.1094/PDIS-01-16-0055-PDN.

Beuve, M., T. Candresse, M. Tannières, and O. Lemaire.  2015.  First report of Grapevine Pinot gris virus (GPGV) in grapevine in France.  Plant Disease 99:293. http://dx.doi.org/10.1094/PDIS-10-14-1008-PDN.

Bianchi, G. L., F. De Amicis, L. De Sabbata, N. Di Bernardo, G. Governatori, F. Nonino, G. Prete, T. Marrazzo, S. Versolatto and C. Frausin.  2015.  Occurrence of Grapevine Pinot gris virus in Friuli Venezia Giulia (Italy): Field monitoring and virus quantification by real-time RT-PCR.  EPPO Bulletin 45:22-32.   DOI: 10.1111/epp.12196.

Casati, P., D. Maghradze, F. Ouaglino, A. Ravasio, O. Failla and P. A. Bianco.  First report of Grapevine pinot gris virus in Georgia.  Journal of Plant Pathology 1 (1). DOI: 10.4454/JPP.V98I1.003

EPPO.  2018.  Grapevine Pinot gris virus (GPGV00).  EPPO Global Database. https://gd.eppo.int/taxon/GPGV00/distribution

Fan, X. D., Y. F. Dong, Z. P. Zhang, F. Ren, G. J. Hu, Z.N. Li, and J. Zhou.  2016.  First report of Grapevine Pinot gris virus in Grapevines in China.  Plant Disease 100:540. http://dx.doi.org/10.1094/PDIS-08-15-0913-PDN.

Gazel, M., K. Caǧlayan, E. Elci, and L. Ozturk.  2016.  First Report of Grapevine Pinot gris virus in Grapevine in Turkey.  Plant Disease 100:657. http://dx.doi.org/10.1094/PDIS-05-15-0596-PDN.

Glasa, M., L. Predajňa, P. Komínek, A. Nagyová, T. Candresse and A. Olmos.  2014.  Molecular characterization of divergent grapevine Pinot gris virus isolated and their detection in Slovak and Czech grapevines.  Archives of Virology 159: 2103-2107.

Giampetruzzi, A., V. Roumia, R. Roberto, U. Malossinib, N. Yoshikawac, P. La Notte, F. Terlizzi, R. Credid, and P. Saldarelli.  A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in cv Pinot gris.  Virus Research 163:262-268.

Lou, B. H., Y. Q. Song, A. J. Chen, X. J. Bai, B. Wang, M. Z., Wang, P. Liu and J. J. He.  2016.  First report of Grapevine pinot gris virus in commercial grapevines in Southern China.  Journal of Plant Pathology 98: 677-697.

Mavrič Pleško, I., M. Viršček Marn, G. Seljak, and I. Žežlina.  2014.  First report of Grapevine Pinot gris virus infecting grapevine in Slovenia.  Plant Disease 98:1014.  http://dx.doi.org/10.1094/PDIS-11-13-1137-PDN.

Rasool, S., S. Naz, A. Rowhani, D. A. Golino, N. M. Westrick, K. D. Farrar and M. Al Rwahnih.  2017.  First report of Grapevine pinot gris virus infecting grapevine in Pakistan.  Plant Disease 101: 1958.

Rieger, T.  2015.  New grapevine virus detected in California: Grapevine Pinot Gris Virus discussed at UCD FPS meeting.  http://www.winebusiness.com/news/?go=getArticle&dataid=160912.

Reynard, J. -S, S. Schumacher, W. Menzel, J. Fuchs, P. Bohnert, M. Glasa, T. Wetzel and R. Fuchs.  2016.  First report of Grapevine pinot gris virus in German vineyards.  Plant Disease 100: 2545.

Ruiz-García, A. B., and A. Olmos.  2017.  First report of Grapevine pinot gris virus in Grapevine in Spain.  Plant Disease 101: 1070.

Saldarelli, P., A. Giampetruzzi, M. Morelli, U. Malossini, C. Pirolo, P. Bianchedi, and V. Gualandri.  2015.  Genetic variability of Grapevine Pinot gris virus and its association with grapevine leaf mottling and deformation.  Phytopathology 105:555-563. http://dx.doi.org/10.1094/PHYTO-09-14-0241-R.

Xiao, H., M. Shabanian, W. McFadden-Smith, and B. Meng.  2016.  First report of Grapevine Pinot gris virus in commercial grapes in Canada.  Plant Disease (Posted online on February 29, 2016). http://dx.doi.org/10.1094/PDIS-12-15-1405-PDN.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: B


Posted by ls 

Pseudocercospora theae

California Pest Rating for
Pseudocercospora theae (Cavara) Deighton 1987
Pest Rating: C

 


PEST RATING PROFILE

Initiating Event: 

On March 6, 2018, the USDA APHIS PPQ requested State Regulatory Officials to review PPQ’s consideration of deregulation of the pathogen, Pseudocercospora theae at US ports of entry.  A ‘Deregulation evaluation of established pests’ report prepared by PERAL was provided for this review.  Therefore, the risk of infestation of P. theae in California is evaluated and a permanent rating is herein proposed.

History & Status:

Background:  Pseudocercospora theae is a fungal plant pathogen in the Mycosphaerellaceae family, that causes leaf spotting known as, bird’s eye spot disease of tea (Camellia spp.). The pathogen has previously been known by its synonyms, Septoria theae and Cecoseptoria theae (Braun et al., 2012; Farr & Rossman, 2018). Holliday (1980) reported that the fungus causes a “very minor” leaf-spotting disease in tea plants.

Pseudocercospora theae has not been reported in California. In the USA, the pathogen has been reported in Florida since about 1955 and disease caused by P. theae has not been reported after 1998.  It is likely that the pathogen is present at non-detectable levels and kept under control by standard disease management practices in nurseries (PPQ, 2018).

Disease cycle: While information on the specific biology of Pseudocercospora theae is limited, it is likely that its disease cycle is like that of other members of the genus.  Generally, Pseudocercospora-infected plants produce conidiophores (specialized hypha) that arise from the plant surface in clusters through stomata and form conidia (asexual spores) successively.  Conidia are easily detached and blown by wind often over long distances.  On landing on surfaces of a plant host, conidia require water or heavy dew to germinate and penetrate the host.  Substomatal stroma (compact mycelial structure) may form from which conidiophores develop.  Development of the pathogen is favored by high temperatures and the disease is most destructive during summer months and warmer climates.  High relative humidity is necessary for conidial germination and plant infection.  The pathogen can overwinter in or on seed and as mycelium (stromata) in old infected leaves (Agrios, 2005).    

Dispersal and spread: Specific information for Pseudocercospora is lacking, however, its mode of dispersal is likely to be like other species of the genus and include air-currents, rain splash/drops, infected plants and propagative material (PPQ, 2018).

Hosts: Camelia sp., C. japonica (Japanese camellia), C. sasanqua (sasanqua camellia), C. sinensis (tea tree; synonyms: Thea assamica, T. sinensis) (Farr & Rossman, 2018).  Although some species of Pseudocercospora are capable of infecting different hosts within a single family (Crous, et al., 2013), there is no evidence that this is true for P. theae (PPQ, 2018).

Symptoms:  Infected host plants exhibit circular leaf spots no greater than 2-3 mm diam., on both sides of a leaf.  The spots are at first purple red, with an indefinite yellow green border and turn white with a narrow purple red ring (Holliday, 1980) with a narrow, raised rim, followed by a dark marginal line or halo (Braun et al., 2012).

Damage Potential: Specific losses due to Pseudocercospora theae have not been reported.  Ornamental plantings of Camellia species may be affected in limited regions of California with sufficient moisture for pathogen infection and development. The climatic suitability of the pathogen encompasses Hardiness Zones 10-13 (PPQ, 2018; Margery et al., 2008).  Nursery production of Camellia species under controlled and conducive conditions for pathogen development would also be of concern in California.  However, P. theae outbreaks in Florida nurseries were successfully controlled by use of proper sanitation practices and fungicide applications (PPQ, 2018), therefore, it is likely that the same will be true for California.  If left uncontrolled, leaf spotting may lead to disease outbreaks under favorable conditions, wherein photosynthetic areas can be reduced, and in severe infections, leaf wilt and drop may be expected.

Worldwide Distribution: Asia: Nepal, Indonesia, India, China, Taiwan, Pakistan, Sri Lanka, Vietnam; Africa: Ethiopia, Malawi, Mauritius, Tanzania, Uganda; Europe: Georgia, Italy, Netherlands Antilles; North America: Florida; South America: Argentina, Brazil, Peru (Braun et al., 2012; EPPO, 2018; Farr & Rossman, 2018).

Official Control: Presently, Pseudocercospora theae is on the ‘Harmful Organism’ list for Colombia (USDA PCIT, 2018).

California Distribution: Pseudocercospora theae has not been reported from California.  The pathogen is not known to be established in California.

California Interceptions:  None reported.

The risk Pseudocercospora theae would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Limited parts of California with adequate moisture, as in coastal regions of the State where Camellia species are grown, are likely to favor establishment of Pseudocercospora theae.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: The host range is limited to Camellia [Camelia , C. japonica (Japanese camellia), C. sasanqua (sasanqua camellia), C. sinensis (tea tree)]

Evaluate the host range of the pest. Score:

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Reproduction is high and dispersal conidia is through windborne conidia, and rain splash or raindrops. The pathogen is also spread through infected plant propagative material.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Specific losses due to Pseudocercospora theae have not been reported. Ornamental plantings of Camellia species may be affected in limited regions of California with sufficient moisture for pathogen infection and development. Nursery production of Camellia species under controlled and conducive conditions for pathogen development would also be of concern in California.  However, theae outbreaks in Florida nurseries were successfully controlled by use of proper sanitation practices and fungicide applications (PPQ, 2018), therefore, it is likely that the same will be true for California.  Uncontrolled infected plants may lose value, however, with control measures adopted, the impact is expected to be low.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: B

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Home garden plantings of Camellia species may be impacted if the pathogen was to establish under favorable environmental conditions and in the absence of adequate disease control.

Evaluate the environmental impact of the pest on California using the criteria below.

Environment Impact:

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Pseudocercospora theae: 9

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 9

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Evaluation is ‘Not established’ in California.

Score: (0)

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 9

Uncertainty:

There is very limited information available on the biology of Pseudocercospora theae.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Pseudocercospora theae is C.


References:

Agrios, G. N.  2005.  Plant Pathology (Fifth Edition).  Elsevier Academic Press, USA.  922 p.

Braun, U., M. Rybak, R. Rybak, and M. G. Cabrera.  2012.  Foliar diseases on tea and mate in Argentina caused by Pseudocercospora species.  Plant Pathology & Quarantine 2 (2): 103-110.  Doi 10.5943/ppq/2/2/2

Crous, P. W., U. Braun, G. C. Hunter, M. J. Wingfield, G. J. M. Verkley, H. -D. Shin, C. Nakashima and J. Z. Groenewald.  2013.  Phylogenetic lineage in Pseudocercospora.  Studies in Mycology 75: 37-114. Published online: 22 May 2012; doi:10.3114/sim0005. Hard copy: June 2013. www.studiesinmycology.org

EPPO.   2018.   Pseudocercospora theae (CERSTH).  PQR database.  Paris, France: European and Mediterranean Plant Protection Organization.  https://gd.eppo.int/

Farr, D.F., & A. Y. Rossman.  2016.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved August 1, 2016, from http://nt.ars-grin.gov/fungaldatabases/

Holliday, P.  1980.  Fungus diseases of tropical crops.  Cambridge University Press, New York. 607 pp.

PPQ. 2018.  DEEP report for Pseudocercospora theae (Cavara) Deighton (Mycosphaerellaceae: Capnodiales) – Bird’s eye spot. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine (PPQ), Raleigh, NC. 4 pp.

USDA PCIT.  2017.  USDA Phytosanitary Certificate Issuance & Tracking System. Retrieved March 21, 2018. 6:36:50 pm CDT.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: C


Posted by ls 

Colletotrichum henanense

California Pest Rating for
Colletotrichum henanense F. Liu & L. Cai 2015
Pest Rating: B

PEST RATING PROFILE

Initiating Event:  

On October 12, 2017, the California Dog Team a shipment of nuts of Castanea sativa (European chestnut) at a parcel distribution facility in Alameda County.  The shipment had originated in Indiana and was destined to a private citizen in Contra Costa County.  A sample of nuts were collected by Alameda County Agricultural officials, and sent to the CDFA Plant Diagnostics Branch for Diagnosis.  Suzanne Latham, CDFA plant pathologist detected the pathogen, Colletotrichum henanense in culture from the nuts. The identity of the associated pathogen was later confirmed by USDA National Identification Services at Beltsville, Maryland, and marked the first domestic detection of C. henanense in the USA.  Consequent to the California detection, all infected plant materials were destroyed. The risk of infestation of C. henanense in California is evaluated and a permanent rating is proposed.

History & Status:

Background:  Colletotrichum henanense is a distinct fungus species belonging to the vastly morphological and physiological variable C. gloeosporioides and is genetically identified from other species of the complex.  The species was originally described in 2015 from tea plants (Camelia sinensis) and Japanese thistle (Cirsium japonicum) in Xinyang, Henan Province, and Beijing, China respectively (Liu et al., 2015).  The pathogen causes anthracnose disease in its host plants.  Camellia species were affected by anthracnose disease in China where the plant species are used as in production of edible oil, processed tea and as ornamentals (Li et al., 2018; Liu et al., 2015).  The pathogen has only been reported from China until its 2017 detection in the California.

Symptoms: Generally, Colletotrichum-infected host plants exhibit symptoms of anthracnose which include dark brown leaf, stem and fruit spots and wilting of leaves which often result in dieback and reduction in plant quality.

HostsCamellia sinensis (tea tree), C. oleifera (tea-oil tree.  Theaceae); Cirsium japonicum (Japanese thistle.  Asteraceae) (De Silva et al., 2017; Li et al., 2018; Liu et al., 2015).  The detection of Colletotrichum henanense in Castanea sativa (European chestnut) is included here (see: Initiating Event).

Symptoms: Colletotrichum henanense causes leaf spot symptoms. Leaf spots or lesions in tea-oil tree are semicircular or half-oval, brown to black with greyish-white centers.  Severely infected leaves wither and drop (Li et al., 2018).

Disease Cycle: It is likely that Colletotrichum henanense has a similar life cycle to that of other Colletotrichum species and survives between crops during winter as mycelium on plant residue in soil, on infected plants, and on seeds.  During active growth, the pathogen produces masses of hyphae (stromata) which bear conidiophores, on the plant surface. Conidia (spores) are produced at the tips of the conidiophores and disseminated by wind, rain, cultivation tools, equipment, and field workers.   Conidia are transmitted to host plants.  Humid, wet, rainy weather is necessary for infection to occur.  These requirements may limit the occurrence of the pathogen in California fields and subsequently, the pathogen may be more of a problem under controlled environments of greenhouses.  Conidia germinate, penetrate host tissue by means of specialized hyphae (appresoria) and invade host tissue.

Transmission: Wind, wind-driven rain, cultivation tools, and human contact.

Damage Potential:  In China, 40% of tea-oil tree yield loss has been suggested (Li et al., 2018).  A 42.5% incidence of anthracnose disease caused by C. henanense was observed in 85 of 200 young tea-oil plants grown in a nursery in Kunming, Yunnan Province, China (Li et al., 2018).  Generally, anthracnose disease can result in reduced plant quality and growth, and marketability.  Nursery productions of Camellia and chestnut are particularly at risk as nursery conditions are often conducive to infection by Colletotrichum species.  In open fields, disease development may be sporadic as it is affected by levels of pathogen inoculum and environmental conditions.

Worldwide Distribution: Asia: China; North America: USA (De Silva et al., 2017; Li et al., 2018; Liu et al., 2015).

Official Control: None reported.

California Distribution Colletotrichum henanense is not established in California (see “Initiating Event”).

California InterceptionsThe risk Colletotrichum henanense would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Like other species of Colletotrichum henanense requires humid, wet, rainy weather for conidia to infect host plants. This environmental requirement and narrow host range may limit the ability of the pathogen to fully establish and spread under dry field conditions.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Presently, the host range is limited to Camellia sinensis, C. oleifera, Cirsium japonicum, and Castanea sativa.

Evaluate the host range of the pest.

Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Colletotrichum henanense has high reproductive potential and conidia are produced successively.  They are transmitted by wind, wind-driven rain, cultivation tools, and human contact, however, conidial germination and plant infection require long, wet periods.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Anthracnose-infected chestnut and camellia plants may result in lower crop value and market loss.  Nursery productions of Camellia and chestnut are particularly at risk as nursery conditions are often conducive to infection by Colletotrichum  In open fields, disease development may be sporadic as it is affected by levels of pathogen inoculum and environmental conditions. Its economic impact is evaluated as a Medium risk.

Evaluate the economic impact of the pest to California using the criteria below.

Score: B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

– Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Chestnut trees cultivated and growing in open environments in California are not expected to be significantly affected by Colletotrichum henanense due to the high moisture conditions required for the development of the pathogen.  However, under humid and moist environments, the pathogen may be more of a problem particularly in ornamental plantings of Camellia in home/urban and private/public settings.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Colletotrichum henanense10

Add up the total score and include it here.

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

 Evaluation is ‘Not Established’

 Score (0). Colletotrichum henanense is not known to be established in California and is known only from its detected in an intercepted shipment of chestnut.

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 10.

Uncertainty:

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for the anthracnose pathogen, Colletotrichum henanense, is B.


References:

 De Silva, D. D., P. K. Ades, P. W. Crous and P. W. J. Taylor.  2017.  Colletotrichum species associated with chili anthracnose in Australia.  Plant Pathology 66 (2): 254-267.

Farr, D. F., and A. Y. Rossman. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Retrieved March 16, 2018, from https://nt.ars-grin.gov/fungaldatabases/

Li, H., G. Y. Zhou, X. Y. Qi and S. Q. Jiang.  2018.  First report of Colletotrichum henanense causing anthracnose on tea-oil trees in China.  Plant Disease “First Look” paper, accepted for publication, posted 01/03/2018. https://doi.org/10.1094/PDIS-08-17-1302-PDN 

Liu, F., Weir, B.S., Damm, U., Crous, P.W., Wang, Y., Liu, B., Wang, M., Zhang, M., and Cai, L. 2015. Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35: 63-86.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: B


Posted by ls 

Citrus Leaf Blotch Virus

    California Pest Rating for
Citrus leaf blotch virus
Pest Rating: B

PEST RATING PROFILE

Initiating Event:

On February 26, 2018, Dr. G. Vidalakis, University of California, Director, Citrus Clonal Protection Program, informed CDFA of his detection of Citrus leaf blotch virus (CLBV) from a Bearss Lime tree at a residence in Los Angeles County.  Subsequently, an official sample, which comprised a total of 4 subsamples, was collected by the CDFA from the same Bearss Lime tree and sent to the CDFA Plant Pathology Laboratory for diagnosis. On February 27, 2018, Tongyan Tian, CDFA Plant Pathologist, detected Citrus leaf blotch virus from all four subsamples using RT-qPCR and further confirmed the identity of the pathogen by conventional RT-PCR and sequencing. A temporary Q rating was assigned to the pathogen.  The status, risk and consequences of introduction of CLBV to California are assessed and a pest permanent pest rating is proposed herein.

History & Status:

Background: In 1968, Dweet mottle virus (DMV) was initially detected and reported from Riverside, California, during re-indexing of a candidate Cleopatra mandarin variety (C. reticulata) on ‘Dweet’ tangor at the University of California Riverside Citrus Variety Improvement Program, the forerunner of the present Citrus Clonal Protection Program (CCPP).  The candidate mandarin variety had been introduced from Florida into the Program at Riverside.  The virus produced leaf chlorotic blotching symptoms that resembled, but were distinct from, symptoms produced by psorosis virus and Citrus concave gum virus.  It also produced a mild exocortis reaction in Etrog citron.  The parent tree did not show symptoms of damage caused by any known virus and the trunk appeared normal without any signs of stem pitting or bark discoloration, although small fruit, twig dieback and little new growth were apparent.  Since the virus produced symptoms only in ‘Dweet’, it was named Dweet mottle virus (Roistacher & Blue, 1968). However, Dweet mottle virus was not reported from any commercial citrus production sites nor was it observed to produce any economic losses and was detected only once after 1963 in the CCPP indexing program (Krueger et al., 2012).

Then in 1984, at the Citrus Variety Improvement Program in Spain, Navarro and other scientists reported a new graft transmissible disease that caused a bud-union incompatibility between ‘Nagami’ kumquat and ‘Troyer’ citrange rootstock. The ‘Nagami’ kumquat had been introduced from Corsica, France.  In addition to bud-union incompatibility, the presumptive virus involved caused vein clearing in certain citrus species and stem pitting in Etrog citron.  However, after shoot-tip grafting, some plants produced were compatible with Troyer, but still caused stem pitting in Etrog citron, thereby, indicating the involvement of more than one virus (Navarro et al., 1984). Galipienso et al., 2000, gave further evidence of the involvement of more than one virus by demonstrating bud union crease in certain citrus species but not others when propagated on ‘Troyer’ citrange. However, chlorotic blotching in ‘Dweet’ tangor, like those induced by DMV, and stem pitting in Etrog citron were produced by all sources of the virus.  In 2001-02, the causal agent in “Nagami’ kumquat was partially purified and characterized and given the candidate name, Citrus leaf blotch virus (CLBV) (Galipienso et al., 2001; Vives et al., 2001, 2002).  Furthermore, these researchers detected CLBV in different citrus varieties from Japan, New South Wales (Australia), Spain, and Florida, usually associated with abnormal bud union on citrange or citrumelo. Comparison of 14 CLBV isolates from Spain, Japan, USA, France and Australia showed low genetic diversity (Vives et al., 2002).  Low rates of seed transmission were demonstrated in three citrus varieties or hybrids (Guerri et al., 2004).     A few years later, Vives et al., (2005) conducted partial sequence analysis to show that Dweet mottle virus from California had over 96% sequence (high) homology with citrus leaf blotch virus from Spain and therefore, suggested that DMV may be caused by CLBV.  Both viruses induce mottling in ‘Dweet’ tangor and stem pitting in ‘Etrog’ citron and that, besides CLBV, a different pathogen causing bud-union crease and vein clearing may be present in ‘Nagami’ kumquat sources but not in DMV from California source.  This was further demonstrated by Vives et al., (2008a) by the development of full-genome cDNA clones of CLBV that caused systemic infection in agro-inoculated herbaceous and citrus host plants and induced chlorotic blotching in ‘Dweet’ tangor and stem pitting in Etrog citron, but not vein clearing in Pineapple sweet orange or bud union crease on trifoliate rootstocks.  Then in 2010, Hajeri and other researchers at the University of California, Riverside, and the USDA ARS National Clonal Germplasm Repository for Citrus and Dates (NCGRCD), Riverside, determined the complete nucleotide sequence of DMV and with phylogenetic analysis showed that DMV is an isolate of CLBV, and not a distinct species, within the genus Citrivirus.

In California, the seed transmissibility of citrus leaf blotch virus caused concern to the citrus nursery industry.  Consequently, Kreuger et al. (2012) reported that all citrus trees at CCPP and NCGRCD were tested for the presence of the virus using RT-PCR with local DMV positives and a CLBV positive from Florida as positive controls. The virus was not detected in the tested trees.  Furthermore, they failed to detect it during surveys of field trees exhibiting bud union abnormalities for the presence of specific pathogens and therefore, while the overall status of CLBV in California is presently unknown, they believe that this virus if present at all, is only at a low incidence.  This is because the close identity of CLBV and DMV has likely prevented CLBV from becoming introduced into California.  All introductions of new citrus germplasm are indexed into ‘Dweet’ tangor as well as other indicator species at CCPP and NCGRCD. Reaction of CLBV in ‘Dweet’ tangor would enable detection of this virus, even if the actual identity of the virus was not known at the time of indexing. Detection of positives or even misidentifications would have been eliminated by thermal therapy or shoot-tip grafting before release (Kreuger et al., 2005, 2012).

Citrus leaf blotch virus has been reported in China, Corsica (France), Cuba, Italy, Japan, New South Wales (Australia), New Zealand, Spain, Florida, Arkansas, Oregon, and California (USA).  In Arkansas and Oregon, the virus was found in peony plants showing stunting and gnarled irregularities, however, since the virus was found in both symptomatic and asymptomatic material, it could not be associated with the disease and its role in peony health is currently unknown.  Nonetheless, CLBV may easily move between propagation cycles via mechanical and seed transmission of clonally propagated peony plants (Gress et al., 2017).

Citrus leaf blotch virus not only causes symptomless infection in most citrus but also, is unevenly distributed within an infected plant, thereby presenting a possible challenge for its detection. In greenhouse studies, Vives et al. (2002) detected CLBV consistently in young leaves of infected ‘Nagami’ kumquat, ‘Owari’ Satsuma, Navelina and Navel oranges, however, detection in old leaves of other citrus species (Eureka lemon, Marsh grapefruit and Nules Clementine) was not consistent, particularly in Pineapple sweet orange.  Detection of the virus in field trees was even less consistent, and not detected in neighbor trees showing similar symptoms possibly due to low titer or uneven distribution of the virus in the plant.

HostsCitrus spp., including C. sinensis, C. limon, C. unshiu, C. paradisi, Poncirus trifoliata, P. trifoliata x C. sinensis (Harper et al., 2008), C. medica (Etrog citrus), C. reticulata x C. sinensis (‘Dweet’ tangor) (Roistacher & Blue, 1968), Fortunella margarita (kumquat “Nagami’) (Navarro et al., 1984), Prunus avium cv. Red-lamp (sweet cherry) (Wang et al., 2016), Actinidia sp. (kiwifruit) (Zhu et al., 2016), Paeonia lactiflora (peony) (Gress et al., 2017).  Experimental hosts include Nicotiana cavicola (Guardo et al., 2009), N. occidentalis and N. benthamiana (Vives et al., 2008b).

Symptoms: Citrus leaf blotch virus causes symptomless infection in most citrus species and cultivars (Vives et al., 2008a).  However, CLBV (and the isolate, DMV) induce chlorotic blotching or mottling in ‘Dweet’ tangor and stem pitting ‘Etrog’ citron. Although CLBV does not induce bud union crease on trifoliate rootstock (Vives et al., 2008a), it has been found to be usually associated with abnormal bud union on citrange or citrumelo rootstock. A different pathogen or interaction of CLBV with a different pathogen is likely the cause of bud union crease and vein clearing symptoms (Vives et al., 2005).

Damage Potential: Citrus leaf blotch virus causes chlorotic leaf blotching in ‘Dweet’ tangor and stem pitting in Etrog citron.  Although it does not induce bud union crease in several citrus species it is usually associated with bud union crease symptoms in citrange and citrumelo rootstocks and therefore, an interaction between CLBV and other agent(s) cannot be ruled out.  There are no reports of yield losses due to CLBV and the virus can cause symptomless infections in most citrus species and cultivars. In California, CLBV (aka DMV) is a regulated pathogen and its distribution is unknown or at best likely to be of low incidence. CLBV (aka DMV) was not reported from any commercial citrus production sites in California nor was it observed to produce any economic losses (Krueger et al., 2012).  However, in certain scion-rootstock combinations using ‘Dweet’ tangor and Etrog citron rootstocks there may be a potential for disease development due to CLBV.

TransmissionCitrus leaf blotch virus is transmitted in citrus by grafting and seed.  CLBV dispersal occurs primarily by propagation of infected buds.  Low rates of seed transmission in at least three citrus species and hybrid, ‘Troyer’ citrange (Citrus sinensis x Poncirus trifoliata), ‘Nagami’ kumquat (Fortunella margarita) and sour orange (C. aurantium), has been demonstrated (Guerri et al., 2004).  Also, CLBV has been mechanically transmitted to Nicotiana cavicola (Guardo et al., 2009), by sap inoculation to N. occidentalis and N. benthamiana (Vives et al., 2008b), and transmitted from citrus to citrus by contaminated knife blades (Roistacher et al., 1980).  The virus is not transmitted by vectors (Galipienso et al., 2000).

Worldwide Distribution: Asia: China, Japan; Europe: Italy, Spain; North America: USA, Cuba; Oceania: New South Wales (Australia), New Zealand (Cao et al., 2017; Gress et al., 2017; Guardo et al., 2007; Harper et al., 2008; Hernández-Rodríguez, 2016; Navarro et al., 1984; Roistacher & Blue, 1968; Vives et al., 2002; Wang et al., 2016).

Official Control: Citrus leaf blotch virus is on the ‘Harmful Organism’ list for Uruguay (USDA PCIT, 2018).  CLBV (aka DMV) is a regulated pathogen in California’s mandatory Citrus Nursery Stock Pest Cleanliness Program (CCR, Title 3, Division 4, Chapter 4, Subchapter 6, Section 3701).

California Distribution: The distribution in California is unknown.  If at all present, it is likely to be only at a low incidence (Kreuger et al., 2005, 2012.  See: ‘Background’).

California Interceptions: No official interceptions have been reported.

The risk Citrus leaf blotch virus would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Although the distribution of Citrus leaf blotch virus in California, is presently unknown and is likely to be only at a low incidence (Kreuger et al., 2012), if not regulated, it may be possible for the pathogen to have a widespread establishment in symptomatic and non-symptomatic infected citrus varieties in commercial citrus-growing regions of the State.

Evaluate if the pest would have suitable hosts and climate to establish in California.  Score: 3

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: The natural host range is limited primarily to Citrus  Other hosts include sweet cherry and kiwifruit reported from China and peony reported from Arkansas and Oregon. Experimental hosts include, Nicotiana cavicola, N. occidentalis and N. benthamiana.

Evaluate the host range of the pest.

Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Citrus leaf blotch virus has high reproduction within its plant host, although unevenly distributed within infected plants. It is transmitted by grafting, seed, and mechanically. Its ability for long distance spread through infected seed render it a high rating for dispersal.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Citrus leaf blotch virus is a regulated pathogen under California’s mandatory Citrus Nursery Stock Pest Cleanliness Program.  Under this program any citrus stock found positive for the pathogen would be eliminated before release for commercial planting.  This pathogen causes chlorotic leaf blotching in ‘Dweet’ tangor and stem pitting in Etrog citron.  Although it does not induce bud union crease in several citrus species, it is usually associated with bud union crease symptoms in citrange and citrumelo rootstocks and therefore, an interaction between CLBV and other agent(s) cannot be ruled out.  There are no reports of yield losses due to CLBV and the virus can cause symptomless infections in most citrus species and cultivars. Researchers have stated that CLBV has not been reported from commercial citrus production sites in California nor was it observed to cause any economic losses.  If citrus stock were not regulated, it is likely that in certain scion-rootstock combinations using ‘Dweet’ tangor and Etrog citron rootstocks there may be a potential for disease development due to CLBV. In such a case, it is estimated that CLBV could lower crop yield and value and trigger the loss of markets.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: No environmental impact is expected, however, if not regulated, CLBV may impact home/urban plantings of citrus host plants.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E.  The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact. Score: 2

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Citrus leaf blotch virus: 12

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

Evaluation is (0). While the distribution of CLBV in California is currently not known, there is no evidence that it is established within the State.

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 12   

Uncertainty:

The in-state distribution of CLBV is not currently known.  Also, the impact of infection related to crop damage and losses is not known.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Citrus leaf blotch virus is B.


References:

Cao, M. J., Y. -Q. Yu, X. Tian, F. Y. Y. and, R. H. Li and C. Y. Zhou.  2017.  First report of Citrus leaf blotch in lemon in China.  Plant Disease 101: 8.  https://doi.org/10.1094/PDIS-10-16-1500-PDN

Galipienso, L., L. Navarro, J. F. Ballester-Olmos, J. Pina, P. Moreno, and J. Guerri.  2000.  Host range and symptomatology of a graft transmissible pathogen causing bud union crease of citrus on trifoliate rootstocks. Plant Pathology 49: 308–314.

Galipienso, L., M. C. Vives, P. Moreno, R. G. Milne, L. Navarro and J. Guerri.  2001.  Partial characterization of Citrus leaf blotch virus, a new virus from Nagami kumquat.  Archives of Virology 146: 357–368.

Gress, J. C., S. Smith, and I. E. Tzanetakis.  2017.  First report of Citrus leaf blotch virus in peony in the U.S.A. Plant Disease 101: 637. https://doi.org/10.1094/PDIS-08-16-1218-PDN

Guardo, M., G Sorrentino, T. Marletta and A. Carusa.  2007.  First report of Citrus leaf blotch on kumquat in ItalyPlant Disease 91: 104.

Guardo, M., O. Potere, M. A. Castellano, V. Savino and A. Caruso.  2009.  A new herbaceous host for Citrus leaf blotch virus. Journal of Plant Pathology 91: 485-488.

Guardo, M., G. Sorrentino and A. Caruso.  2015.  Characterization and incidence of Citrus leaf blotch virus in Southern Italy.  12th International Citrus Congress – International Society of Citriculture. Acta Horticulturae 1065: 825-83.

Hajeri, S., C. Ramadugu, M. Keremane, G. Vidalakis and R. Lee.  2010.  Nucleotide sequence and genome organization of Dweet mottle virus and its relationship to members of the family Betaflexiviridae.  Arch Virol 15: 1523-1527.  DOI 10.1007/s00705-010-0758-1

Harper, S. J., K. M. Chooi and M. N. Pearson.  2008.  First report of Citrus leaf blotch virus in New Zealand.  Plant Disease 92: 1470.  https://doi.org/10.1094/PDIS-92-10-1470C

Hernàndez-Rodríguez, L., J. M. Pérez-Castro, G. García-García, P. Luis Ramos-González, V. Zamora-Rodríguez, Xenia Ferriol-Marchena, Inés Peña-Bárzaga and L. Batista-Le Riverend.  2016.  Citrus leaf blotch in Cuba: first report and partial molecular characterization.  Tropical Plant Pathology 41: 147. https://doi.org/10.1007/s40858-016-0078-4

Krueger, R. R., J. A. Bash and R. F. Lee.  2005.  Phytosanitary status of California citrus.  International Organization of Citrus Virologists Conference Proceedings (1957-20), 16 (16): 468-472.  https://escholarship.org/uc/item/3667q9qn

Krueger, R. R., J. A. Bash and R. F. Lee.  2012.  Dweet mottle virus and Citrus leaf blotch virus.  http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=7112

Navarro, L., J. A. Pina, J. F. Ballester-Olmos, P. Moreno and M. Cambra.  1984.  A new graft transmissible disease found in Nagami kumquat. In: Timmer L. W., and J. A. Dodds (eds) Proceedings of the 9th Conference of the International Organization of Citrus Virologists, IOCV, Riverside, pp 234–240.

Roistacher, C. N., and R. L. Blue.  1968.  A psorosis-like virus causing symptoms only on ‘Dweet’ tangor.  International Organization of Citrus Virologists Conference Proceedings (1957-2010), 4(4): 13-18.

Roistacher, C. N., E. M. Nauer and R. C. Wagner.  1980.  Transmissibility of cachexia, Dweet mottle, psorosis and infectious variegation viruses on knife blades and its prevention.  Proceedings of the 8th Conference of the International Organization of Citrus Virologists, IOCV, Riverside 1980: 225-229.

USDA PCIT.  2018. USDA Phytosanitary Certificate Issuance & Tracking System. Retrieved March 15, 2018. 3:25:54 pm CDT.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.

Vives, M. C., L. Galipienso, L. Navarro, P. Moreno and J. Guerri.  2001.  The nucleotide sequence and genomic organization of Citrus leaf blotch virus: Candidate type species for a new virus genus.  Virology 287: 225-233.

Vives, M. C., L. Galipienso, L. Navarro, P. Moreno and J. Guerri.  2002.  Citrus leaf blotch virus: a new citrus virus associated with bud union crease on trifoliate rootstocks.  International Organization of Citrus Virologists Conference Proceedings (1957-2010), 15 (15): 205-212.

Vives, M. C., L. Rubio, L. Galipienso, L. Navarro, P. Moreno and J. Guerri.  2002.  Low genetic variation between isolates of Citrus leaf blotch virus from different host species and different geographical origins. Journal of General Virology 83: 2587–2591.

Vives M. C., J. A. Pina, J. Juarez, L. Navarro, P. Moreno and J. Guerri.  2005.  Dweet mottle disease is probably caused by Citrus leaf blotch virus. 16th Conference of the International Organization of Citrus Virologists Conference Proceedings (1957-2010), 15 (16): 251-256.

Vives, M. C., S. Martin, S. Ambros, A. Renovell, L. Navarro, J. A. Pina, P. Moreno, J. and J. Guerri.  2008a.  Development of a full-genome cDNA clone of Citrus leaf blotch virus and infection of citrus plants. Molecular Plant Pathology 9:787–797.

Vives, M. C., P. Moreno, L. Navarro and J. Guerri.  2008b.  Citrus leaf blotch virus.  In: Rao, G. P., A. Myrta and K. Ling (eds).  Characterization, Diagnosis and Management of Plant Viruses, vol. 2. Pp. 55-67.  Studium Press, Houston, TX, USA.

Wang, J., D. Zhu, Y. Tan, X. Zong, H. Wei and Q. Liu.  2016. First report of Citrus leaf blotch virus in sweet cherry.  Plant Disease 100:1027.

Zhu, Chen-xi, Wang, Guo-ping, Zheng, Ya-zhou, Yang, Zuo-kun, Wang, Li-ping, Xu, Wen-xing and N. Hong.  2016.  RT-PCR detection and sequence analysis of coat protein gene of Citrus leaf blotch virus infecting kiwifruit trees.  Acta Phytopathologica Sinica, 46 (1): 11.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: B


Posted by ls 

Marasmiellus Palmivorus

California Pest Rating for
Marasmiellus palmivorus (Sharples) Desjardin comb. prov.
Pest Rating: C

PEST RATING PROFILE

Initiating Event:   

None.  The risk of infestation of M. palmivorus in California evaluated and a permanent rating is herein proposed.

History & Status:

Background:   Marasmiellus palmivorus is a Basidiomycete fungus in the order Agaricales.  The species was described by Sharples in 1936, but, in the 1920s, was reported to have caused significant losses to oil palm and coconut in Malaysia 1920 (Pong et al., 2012).  In 1980, specimens of the fungus from coconut and oil palm were initially identified as Marasmiellus semiustus, a species that is generally regarded synonymous with M. palmivorus (CABI, 2018).  There has been confusion over the taxonomy of M. palmivorus and the species was previously attributed to the genus Marasmius (palmivorus).  However, Hemmes and Desjardin (2002) and Wilson and Desjardin (2005), in their taxonomic revision of the genus, regarded the genus Marasmius as a synonym of Marasmiellus until further DNA phylogenetic analysis is done to support its accurate identification (Pong et al., 2012).

Marasmiellus palmivorus can be saprophytic on a range of dead and dying plant material, or parasitic on tropical plants.  The species is reported to cause bunch rot disease on oil palm fruit, seeds, and seedlings in Malaysia (Almaliky et al., 2012; Pong et al., 2012), and is associated with leaf infection and bud rot of coconut, also causing embryo and shoot rot in germinating nuts and post-emergence damping off disease in Malaysia (Amaliky et al., 2013; CABI, 2018).  Synonymous species of M. palmivorus have also been recorded on pineapple causing trunk and root rot, and root rot of maize and sugarcane (CABI, 2018). In Hawaii, M. palmivorus was listed as a wood-rotting basidiomycete fungus of native and exotic plant species (Gilbertson et al., 2002).

In California, during March 2017, Marasmiellus palmivorus was detected on ginger flower stems from a shipment of ginger cut flowers that originated in Hawaii and was intercepted in Humboldt County by Humboldt County Agricultural officials. The pathogen was identified at the CDFA Plant Pathology Lab and was given a Q rating, which resulted in the destruction of the shipment.  The pathogen is not known to be established in California.

Disease Development: The fungus is normally saprophytic on decaying and dead materials.  It spreads to a new food source by growth of its hyphal strands or rhizomorphs and requires plenty of moisture for growth and development.  Not much is known of the biology of the fungus.  It is presumed that the fungus becomes parasitic once it has attained a certain inoculum level as infection by a small amount of spores or mycelium is unlikely (Turner, 1981 in CABI, 2018).

Dispersal and spread: Infected plants including flowers, fruits, leaves, roots, stems, true seeds, wood, contaminated coconut seed-nuts, plant decaying and dead materials, windblown rain, water-splash, air-currents (CABI, 2018).

Hosts: Ananas comosus (pineapple), Alpini purpurata (red ginger), Cocos nucifera (coconut), Elaeis guineensis (African oil palm), Etlingera elatior (torch ginger), Hevea brasiliensis (rubber), Musa x paradisiaca (plantain), Zingiber officinale (ginger) (Almaliky et al., 2012, 2013; CABI, 2017; Farr & Rossman, 2017; Gilbertson et al., 2002).

Symptoms:  Marasmiellus palmivorus causes bunch rot disease of oil palm in Malaysia.  In pathogenicity tests conducted by Almaliky et al. (2012), symptoms in fruit included a wet, discolored soft rot that extended upward to the tip of the fruit; infected seeds showed pre-emergence damping off consisting of seed decay, reddish-brown discoloration of shoots and radicles, failure to germinate, and post-emergence damping off; infected seedling initially showed chlorosis that turn brown to black rot lesions on the base of lower leaves, and roots were usually soft, rotten, water-soaked and dark brown or black in color with white mycelia covering the roots and crowns partially. Seedlings reared in a greenhouse developed root and crown rot and leaf blight.  Initial necrosis at the bases of leaves subsequently caused extensive discoloration, softening, rapid drying and wilting of leaves.  Rotting of seedlings initiated near the soil line and moved downwards and upwards resulting in parts of stems and base of leaves turning brown to black in color.  .  Dense white mycelia were formed on the lower stem of base of seedlings.  Basidiocarps (mushroom-like fruiting bodies) were formed at the base of seedlings near the crown.  The fungus also caused post-emergence damping off on coconut seedlings in Malaysia (Almaliky et al., 2013).  The researchers also showed that isolates from coconut were pathogenic to oil palm.

Damage Potential: In California, certain hosts, such as, ginger and plantain that are grown as ornamental plants by nurseries, small businesses, hobbyists, and private residents may be affected by the fungus if it were able to establish within high moisture environments.    

Worldwide Distribution:  Africa: Congo Democratic Republic, Nigeria; Asia: Brunei Darussalam, India (Andaman and Nicobar Islands), Indonesia, Malaysia; Central America and Caribbean: Trinidad and Tobago, North America: USA (Hawaii), South America: Colombia; Oceania: Fiji, Papua New Guinea (CABI, 2017; Farr & Rossman, 2017; Gilbertson et al., 2002).

Official Control: Marasmiellus palmivorus is on the ‘Harmful Organism’ lists for Guatemala, Nicaragua, and Peru (USDA-PCIT, 2017).

California Distribution: Marasmiellus palmivorus has not been reported from California.

California Interceptions: To date, Marasmiellus palmivorus has been detected once in a single shipment of ginger cuttings that were shipped from Hawaii and intercepted in Humboldt County.

The risk Marasmiellus palmivorus would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Marasmiellus palmivorus requires high amounts of moisture to grow and develop. It may be able to establish only in very limited areas of the State, if at all.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 1

Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: The host range is limited to some tropical plants that include, pineapple, African oil palm, coconut, plantain, rubber, and ginger.  It is also a saprophytic and feeds on dead and decaying material.  Presently, its pathogenicity has only been reported on coconut and Oil palm.

Evaluate the host range of the pest.

Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Infected plants including flowers, fruits, leaves, roots, stems, true seeds, wood, contaminated coconut seed-nuts, plant decaying and dead materials, windblown rain, water-splash, air-currents.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Potential losses to oil palm in Malaysia have only been reported.  Economic impact due to the fungus are largely not known.  Most hosts of the fungus are not commercially grown in California. Other hosts, such as, ginger and plantain that are grown as ornamental plants by nurseries may be affected by the fungus if it were able to establish within high moisture environments.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: B

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 1

Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact:  Under high moisture environments, Marasmiellus palmivorus may impact ornamental plantings of host plants in home/urban gardens.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Marasmiellus palmivorus: Low (8)

Add up the total score and include it here.

Low = 5-8 points

-Medium = 9-12 points

-High = 13-15 points

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Evaluation is ‘Not established’ in California.

Score: (0)

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 8

Uncertainty:

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Marasmiellus palmivorus is C.


References:

Almaliky, B. S. A., M. A. Zainal Abidin, J. Kadir, and M. Y. Wong.  2012.  Pathogenicity of Marasmiellus palmivorus (Sharples) Desjardin comb. prov. on oil palm Elaeis guineensis.  Wulfenia 19: 1-17.

Almaliky, B. S. A., J. Kadir, M. Y. Wong, and M. A. Zainal Abidin.  2013.  First report of Marasmiellus palmivorus causing post-emergence damping off on coconut seedlings in Malaysia. Plant Disease 97: 143.

CABI, 2017.    Marasmius palmivorus (oil palm bunch rot) full datasheet.  Crop Protection Compendium.  http://www.cabi.org/cpc/datasheet/34926

Farr, D. F., and A. Y. Rossman.  2017.  Fungal Databases, U. S. National Fungus Collections, ARS, USDA. Retrieved April 27, 2017, from http://nt.ars-grin.gov/fungaldatabases/

Gilbertson, R. L., D. M. Bigelow, D. E. Hemmes, and D. E. Desjardin.  2002.  Annotated check list of wood-rotting Basidiomycetes of Hawai’i.  Mycotaxon 82: 215-239

Pong, V. M., M. A. Zainal Abidin, B. S. A. Almaliky, J. Kadir, and M. Y. Wong.  2012.  Isolation, fruiting and pathogenicity of Marasmiellus palmivorus (Sharples) Desjardin (comb.prov.) in oil palm plantations in West Malaysia.  Pertanika Tropical Agricultural Science 35 (S): 38-48.

USDA PCIT.  2017.  USDA Phytosanitary Certificate Issuance & Tracking System. April 26, 2017, 5:04:18 pm CDT.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: C


Posted by ls

Cucumber Green Mottle Mosaic Virus

 California Pest Rating for
Cucumber Green Mottle Mosaic Virus
Pest Rating: A

PEST RATING PROFILE
Initiating Event:  

On December 15, 2017, Cucumber green mottle mosaic virus (CGMMV) was detected in a watermelon seed sample submitted by the USDA to the CDFA Plant Pathology Lab, and collected from a seed company’s storage facility outside of California. The seed crop was produced in California.  The seed company had originally identified the pathogen and reported its findings to the USDA.  An official identification of CGMMV was made by Tongyan Tian, CDFA plant pathologist.  Subsequent investigations are currently underway.  CGMMV is a Federal Actionable Pathogen regulated by USDA.  Currently, both agencies consider CGMMV a quarantine pathogen that is temporary, transitional and under eradication, and therefore, not established within California or anywhere else in the United States.  The current status and rating for the pathogen is reassessed here.

History & Status:

Background:  Cucumber green mottle mosaic virus is an economically important, seed transmitted pathogen known to cause significant losses in cucurbitaceous crop production in many cucurbit growing regions globally. All cucurbits are susceptible to the virus, although some are more tolerant than others (Falk et al., 2017).

Cucumber green mottle mosaic virus was originally described from the United Kingdom in 1935.  Since then, it has spread to several other regions mostly within Europe, Asia and the Middle East, most likely due to its seed-borne nature and trade of cucurbit seed from CGMMV-infected regions to non-infected regions globally.  CGMMV has also been recorded in Nigeria, Africa (Falk et al., 2017) and a possible detection of CGMMV in melon was reported from Brazil, South America, however, this record has not been confirmed (Choudhury & Lin, 1982).

The pathogen was first reported from North America in 2013, from California, USA and from Alberta, Canada.  A detailed account of its first and subsequent detections in California is given below (see ‘Detections in California’).  The first report of CGMMV in Alberta, Canada, was of infected mini-cucumber crops grown in greenhouse. The disease had been previously found in greenhouses in Ontario, British Columbia (Ling et al., 2014; Zhang et al., 2014).  In 2014, CGMMV was reported for the first time from Australia on detection of the pathogen in commercial farm-grown watermelon plants in the Northern Territory, and in 2015 and 2016 was subsequently confirmed in Queensland and Western Australia respectively (QDAF, 2017).

Biology: The virus is a species in the genus Tobamovirus (to which also belongs the well-known Tobacco mosaic virus).  The species has a positive single-stranded RNA genome and coat protein, comprised in rod-shaped particles (virions).  Several strains or isolates of CGMMV have been reported from different countries.  All strains of the virus are extremely stable in plant sap.  Infectivity is lost at 86-100 C (Type strain at 90 C) depending on viral strain. In California, although the precise source or origin of CGMMV has not been determined, research showed that the 2013 detection in Yolo County and the 2014 detections in commercial seedless watermelon production fields represented two separate introductions, as genetic analysis of those two isolates were distinct from each other (Falk et al., 2017).  The California 2013 CGMMV isolate showed 95% DNA sequence identity to those isolates reported from Russia, Spain, and Israel (Tian et al., 2014), whereas, the California 2014 CGMMV isolates and the Canada CGMMV isolates showed very similar DNA sequence identity, thereby, suggesting that they may have originated from the same source (Falk et al., 2017). The Canada CGMMV isolate showed strong sequence identity to the CGMMV Asian isolates thereby, suggesting their likely Asian origin (Zhang et al., 2014; Ling et al., 2015).

Detections in California:  In the USA, cucumber green mottle mosaic virus has only been detected in California, from 2013 to 2017.  An up-to-date account is given of those detections and subsequent regulatory actions.

 In 2013, the Cucumber green mottle mosaic virus (CGMMV) was detected in a melon field (Cucumis melo var. Saski) in Yolo County during a phytosanitary inspection for seed production.  The pathogen was identified by Tongyan Tian, CDFA Plant Pathologist, and confirmed by the USDA APHIS.  This detection marked the first record of the pathogen in California and in the United States (Tian et al., 2014; USDA APHIS, 2013; CDFA-PEA, 2013).   Three contiguous fields planted to cucumber (2 fields) and watermelon (1 field), were also determined as positive for CGMMV.  Subsequent trace back investigations revealed that the source seed for the Yolo County melon site was grown in a seed lot in Sutter County in 2012 and later, was found positive for CGMMV. The 2013 trace back also revealed that in 2012, two sites in Sutter County produced a total of 6 melon, watermelon and cucumber seed lots, of which site 1 was positive for CGMMV in all three cucurbit hosts while site 2 was negative.  Those two sites are currently planted to non-hosts of CGMMV, and in 2013, volunteer cucumber plants in site 1 tested negative for CGMMV.   Two foreign sources of melon and cucumber seed lots planted in the two Sutter County sites were identified as Chile and Romania: no (melon) seed remained for testing from the Chilean source and the Romanian cucumber seed tested positive for CGMMV.     As for the 2013 Yolo County CGMMV positive site, County and State approved abatement measures were implemented.   Eventually, wheat, a non-host, was grown at the site and in 2014, volunteer melon plants tested positive, while volunteer watermelon plants were negative.  Monitoring of volunteer plants was implemented and those in the field are treated with herbicide and biodegraded.  Furthermore, in 2013, approximately 120 trace forward seed lots were evaluated for risk of potential infection with CGMMV.  Pathways identified as possible risk links for potential CGMMV infection were source seed, shared irrigation, proximity to a positive detection, mechanical transmission (equipment and workers), and seed processing operational steps.  Trace-forward investigations revealed that 2012 Sutter County melon seeds infested with CGMMV had been shipped to Romania and Africa.  Thirty-four trace forward and trace back seed lots were sampled and tested for CGMMV of which 3 were positive for the pathogen.  In 2014, additional cucumber seed lots belonging to the 2013 trace forward lots in Sutter County tested negative for CGMMV.

In 2014, during August and September, CGMMV was detected in watermelon plant samples collected from seven watermelon production fields in Fresno, Kern, and San Joaquin Counties.  The CDFA did a trace-back to the seed lots that were linked to the CGMMV-positive fields, but found those seed lots to be negative for the pathogen.  Subsequently, the seeds were traced back to the transplant nursery and CDFA theorized that the seed lots were cross contaminated at the transplant nursery. The CGMMV-positive watermelon fields were placed on a regulatory hold (quarantine) and an abatement order was issued to growers requiring; non-host planting, equipment sanitation, other bio-security measures, and monitoring for the virus for a period of two years (Schnabel, 2017).

In 2016, during February, a seed company reported its detection of CGMMV in imported melon seed.  Consequently, the seed company voluntarily destroyed the seed lots by deep burial at a local landfill.  Later, in June 2016, a seed company reported its detection of CGMMV in seed produced in Sutter County The field had already been disked and planted with rice at the time of the report.  Nevertheless, cucurbit volunteers from the field and adjacent fields were sampled by the County and tested negative for the virus by CDFA.  The field continues to be monitored and planted to a non-host crop.  The CGMMV-positive seeds which were stored at a facility outside of California, were seized by the USDA and destroyed by incineration.  Then, in October 2016, a seed company reported its detection of CGMMV in watermelon seed produced in Yolo County. At the time of testing and reporting, the section of the field that produced the positive detection, was already fallow.  The seed company has maintained the field as fallow and will continue to notify CDFA of any volunteers, which if present, will be sampled in spring of 2018 by CDFA.  Also, the seed was voluntarily destroyed and appropriate sanitation and biosecurity measures have been implemented by the seed company (Schnabel, 2017).

In 2017, during March, a seed company reported its detection of CGMMV in watermelon seeds produced in Colusa County.  The field had already been disked and was fallow at the time of the report.  However, cucurbit volunteers and broadleaf weeds, present at the field site, were sampled and tested negative for the pathogen.  The grower continues to use appropriate best management practices including, sanitation and biosecurity measures.  The CGMMV-positive seeds which were stored outside of California, were seized by the USDA and destroyed by incineration.  In October, a seed company reported its detection of CGMMV in a watermelon seed lot produced in Sutter County.  The production field was fallow at the time of the report and any plant material recovered from the field tested negative for CGMMV.  The field will be monitored next season and the grower will be implementing sanitary and biosecurity measures.  The seed lot was seized and destroyed.  Also, at that time, CGMMV was detected in Opo squash (Lagenaria siceraria) plants grown in a small farm in Fresno County.  Fresno County issued a regulatory hold on the field as well as an abatement notice. No host crops will be grown at the site for the next two years.  The associated seeds were collected for destruction by the County.  In November, two different seed companies provided a total of four separate reports of the detection of CGMMV in watermelon seeds.  The positive seed lots were produced in Sutter, Colusa, and Glenn Counties. Trace-investigations are currently underway for each detection.  The fields were sampled and have tested negative for CGMMV. The fields will be monitored and sanitation and biosecurity measures will be implemented.  Currently, the seed lots are on hold pending voluntary destruction (Schnabel, 2017).

Plant infection:  CGMMV gains entrance into a plant through wounds, infects a few cells, moves from cell to cell (through plasmodesmata) colonizing the plant tissues and reaches the phloem where it travels systemically and infects the entire plant.

Hosts:  All cucurbit species are susceptible to CGMMV.  Main hosts include, Citrullus lanatus (watermelon), Cucumis melo (melon), C. sativus (cucumber), C. anguria (burr gherkin), Gladiolus hybrids (sword lily), Lagenaria siceraria (bottle gourd), Momordica charantia (bitter gourd), Cucurbita moschata (butternut squash), C. pepo (zucchini and button squash), C. maxima (squash), Luffa acutangula (angled luffa), L. cylindrical (smooth luffa), Benincasa hispida (winter melon), Cucumis metuliferus (horned melon), C. myriocarpus (prickly paddy melon), Citrullus colocynthis (bitter paddy melon), Trichosanthes cucumerina (snake gourd) (CABI, 2017; Falk et al., 2017). [Cech (1980) reported that the CGMMV caused apricot bare twig and unfruitfulness disease syndrome in Prunus armeniaca (apricot) only when co-infected with strawberry latent ringspot virus.]

Several experimental hosts have been tested and susceptible hosts are in three families namely, Chenopodiaceae, Cucurbitaceae and Solanaceae.  CGMMV-indicator plant species include Chenopodium album ssp. amaranticolor, Datura stramonium, and Nicotiana benthamiana.  Weeds species may be potential alternate hosts, however, currently, the role of alternate host plants in CGMMV epidemiology is not known (Falk, 2017).  Potential CGMMV weed hosts include: Amaranthus retroflexus (red root or American pigweed), Chenopodium album (lambsquarter), Heliotropium europium (Helitrope), Portulaca oleracea (pigweed), Solanum nigrum (nightshade) and Cucumis myriocarpus (paddy melon) (Falk et al., 2017).

Symptoms: Plant symptoms may vary mainly depending on virus strain, host plant species/cultivar, plant part, time of plant growth, and environmental conditions.  In general, plant symptoms may include leaf mosaic, mottling, distortion, vein clearing, and stunted growth; infected fruit can be mottled, discolored, distorted, internally discolored and deteriorated.  Root systems may be reduced.

Some Asian cultivars of cucumber only show yield losses without showing leaf symptoms.  In cucumber, the type strain causes leaf mottling, blistering and distortion, and stunted growth.  Symptoms appear 7-14 days after infection.  Usually no symptoms are produced on fruit, however, certain strains cause fruit mottling and distortion.  On the other hand, the watermelon strain can cause slight leaf mottling and dwarfing in watermelons and necrotic lesions develop on the peduncle.  Virus infection at fruit set or soon after can result in serious internal discoloration and decomposition in the fruit.

No symptoms are produced in CGMMV infected squirting cucumber (Ecballium elaterium) (CABI, 2017) – a plant native to Europe, North Africa and parts of Asia, grown sometimes for its ornamental and medicinal value. Not present in California (acc. to USDA Natural Resources Conservation Services). It is thought that infected weed species may be asymptomatic – however, this has yet to be proven.

Seed set or appearance is not affected by CGMMV and therefore, infected seed are indistinguishable from non-infected ones (Reingold et al., 2015, 2016).

Plant symptoms due to CGMMV are similar to those of other viruses in cucurbitaceous species.  Therefore, it is difficult to definitively identify the virus solely by the symptoms its causes in host plants.  For a definitive identification, serological, molecular and/or electron microscopy tests are needed.

Damage Potential: In commercial field or greenhouse environments, losses up to 100% can occur, although 40-80% losses are common (Falk et al., 2017).  Yield losses of approximately 15% in Cucurbitaceous vegetable crops are reported (Shang et al., 2011).  In Japan, considerable economic losses in watermelon have occurred.  Severe symptoms in fruit including, fruit pulp deterioration, low sugar accumulation and flavor, and distortion make fruit unmarketable and non-consumable (CABI, 2017).    In India 75%, 80% and 100% losses are reported in watermelon, muskmelon, and bottle gourd respectively. 5-16 % losses occur in cucumber yields and fruit quality.  Increased costs in production of clean planting sites and stock can be expected.  Furthermore, since the pathogen is seedborne in cucurbits, it could negatively impact export of cucurbit seeds.

Transmission: CGMMV is contagious and is transmitted by mechanical contact with contaminated sources.  It can spread through foliage contact, when plants are handled during cultivation or through grafting, when infected rootstocks are used in watermelon or cucumber cultivation.  It can survive on plant pruning equipment, clothing, hands, and machinery and be spread by agricultural practices and mechanical means (Reingold et al., 2016; USDA, 2017).  It can be transmitted from infected plant debris in soil to uninfected plants via roots.  The virus is very stable in the sap of infected plants and therefore, is able to remain active in plant debris in soil long after the death of host plant cells.  Also, it is spread through untreated irrigation water and in recirculated greenhouse water. All of these can serve as sources of inoculum.  The virus is also transmitted by pollen and seed of CGMMV-infected cucurbit plants (Liu et al., 2014) both on and within the seed coat (Hollings, et al., 1975). However, research has shown that the rate of CGMMV infection of seedlings developing from cucurbit seeds containing the pathogen, is typically 1-5% or less, under greenhouse conditions, thereby, indicating that cucurbit seeds may contain infectious CGMMV, but the virus is not always transmitted to developing seedlings (Falk, 2017).  On the other hand, high seed-transmission rates of 76% from CGMMV-infected cucumber plants, have been reported (Liu et al., 2014).

Movement of infected seed appears to be the primary means for long-distance spread, whereas, the virus is spread locally through contact, infested crop residues, and irrigation water.

CGMMV is not spread from plant to plant by specific insect or nematode vectors.   Experimentally, the cucumber leaf beetle Raphidopalpa fevicollis was shown to be a probable vector of CGMMV to test plants, whereas, the green peach aphid (Myzus persicae), the cotton aphid (Aphis gossypii) or cucumber leaf beetles (Aulacophora femoralis) did not transmit the virus (Rao & Varma, 1984).

Experimentally, CGMMV has been transmitted by dodder species (Hollings et al., 1975).

CGMMV was detected in cow dung manure and studies have demonstrated the ability of the virus to pass through the alimentary system of rodents without losing biological activity.

Worldwide Distribution: Asia: China, India, Iran, Israel, Japan, Republic of Korea, Lebanon, Myanmar, Pakistan, Saudi Arabia, Sri Lanka, Syria, Taiwan, Thailand, Turkey;

Africa: Nigeria; North America: Canada, USA (California: temporary, transitional, and under eradication); Europe: Austria, Bulgaria, Czechoslovakia (former), Denmark, Finland, Germany, Greece, Hungary, Latvia, Lithuania, Moldova, Netherlands, Norway, Romania, Russian Federation, Spain, Sweden, Ukraine, United Kingdom and Yugoslavia (former); Oceania: Australia (CABI, 2017; Ling & Li, 2013; Tesoriero et al., 2016).

An unconfirmed record of CGMMV is from Brazil, South America (CABI, 2017)

Official Control: Currently, the following countries include CGMMV on their ‘Harmful Organism’ lists: Chiles, China, Colombia, Ecuador, Georgia, Guatemala, Honduras, Indonesia, Japan, New Zealand, Nicaragua, Panama, Paraguay, Peru, Syrian Arab Republic, Thailand, and Timor-Leste (USDA PCIT, 2017).

In the USA, CGMMV is a Federal Actionable Pathogen of quarantine concern and is considered temporary, transitional and under eradication.  Currently, CGMMV is an A-rated, quarantine actionable pathogen in California.

California Distribution:  CGMMV is not established in California.

California InterceptionsThere are no state reports of CGMMV detections in plant materials intercepted within or at points of entry in California.

The risk Cucumber green mottle mosaic virus would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Since its first detection in 2013, there have been repeated incidences of field detections that directly indicate that CGMMV is likely to establish a widespread distribution in all cucurbit-growing regions within California.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 3

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: CGMMV has a moderate range of cucurbitaceous host plants which are commonly grown mostly in the warmest areas of California, such as the San Joaquin Valley, the Sacramento, Valley and the low desert valleys.

Evaluate the host range of the pest.

Score: 2

– Low (1) has a very limited host range.

Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: CGMMV is capable of high reproduction and widespread dispersal mainly as it is highly contagious and is easily transmitted through mechanical, plant and human contact, irrigation water and water in contact with infected crop debris.  It can be widely dispersed over long distance through infected seed, and is highly stable and remains active in infected plant debris in soil.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: CGMMV is capable of significantly lowering crop yield and value thereby, increasing crop production costs.  It can result in the loss of markets through the imposition of quarantines by domestic and international trade partners, change in cultural practices, including adoption of a non-host crop period in infested and treated fields for 3-5 or more years, and alteration of delivery and distribution of irrigation water to and from infested fields.  Furthermore, significant losses in seed and transplant production can result due to a CGMMV infestation.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C, G

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: Detection and establishment of CGMMV would significantly impact existing cultural practices, as well as those followed for home/urban gardening and ornamental production.  Subsequently, it could result in the implementation of additional and costly official and home/urban treatment programs.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: D, E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact. Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Cucumber green mottle mosaic virus:

Add up the total score and include it here. (Score)

-Low = 5-8 points

-Medium = 9-12 points

High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 14 (High)

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is ‘Not Established (0):  Similar and subsequent to its original detection in 2013, all incidences of Cucumber green mottle mosaic virus detections (detailed above in ‘Detections in California’) have resulted in eradicative actions.  The viral pathogen is, therefore, not considered as established in California and continues to be ‘transient, temporary and under eradication’.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 14.

Uncertainty:

Currently, the precise origin or source of CGMMV introduction into the USA is not known for certain.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Cucumber green mottle mosaic virus continues as A.


References:

Abatement Notice.  2013.  (  ) Seed Company, Cucumber green mottle mosaic virus (CGMMV) Acidovorax avenae subsp. citrulli (BFB) abatement notice.  County of Yolo, John Young Agricultural Commissioner.

CABI   2017.  Cucumber green mottle mosaic virus (white break mosaic) datasheet.  Crop Protection Compendium.  http://www.cabi.org/cpc/datasheet/16951

Cech M., M. Filigarova, J. Pozdena, and H. Branisova.  1980. Strawberry latent ringspot and cucumber green mottle mosaic viruses in apricots with the bare twig and unfruitfulness disease syndrome. Acta Phytopathologica Academiae Scientiarum Hungaricp, 15:391-396

CDFA-PEA.  2013.  Cucumber green mottle mosaic virus and Bacterial fruit blotch detection in California.  Pest Exclusion Advisory no. 29-2013.  California Department of Food and Agriculture, November 27, 2013.

Choudhury, M. M., and M. T. Lin.  1982.  ‘Ocorrência de viroses em plantas de melão e abobrinha na região do sub-médio São Francisco’, EMBRAPA Pesquisa am Andamento, vol. 14, no. 4, pp. 1–2.

Falk, B. W., T. L. Pitman, B. Aegerter, and K-S. Ling.  2017. Recovery Plan for Cucumber green mottle mosaic virus.  Plant Diseases That Threaten U. S. Agriculture Identified and Prepared for Under the National Plant Disease Recovery System.  USDA ARS. https://www.ars.usda.gov/office-of-pest-management-policy/npdrs/ Last modified 3/7/2017.

Hollings M, Y. Komuro, and H. Tochihara.  1975.  Descriptions of Plant Viruses No. 154. Wellesbourne, UK: AAB, 4 pp.

Ling, K. S., and R. Li.  2014.  First report of cucumber green mottle mosaic virus infecting greenhouse cucumber in Canada.  Plant Disease 98 (5): 701.

Liu, H. W., L. X. Luo, J. Q. Li, P. F. Liu, X. Y. Chen,  and J. J. Hao.  2014.  Pollen and seed transmission on Cucumber green mottle mosaic virus in cucumber.  (Published online 17 April 2013.)  Plant Pathology (2014) 63, 62-77.

Lovig, E.  2014.  Email communication from E. Lovig, CDFA, to A. Morris and J. Chitambar, CDFA.  Subject: Cucumber green mottle mosaic virus (CGMMV) and Bacterial fruit blotch (BFB) detections in California.  Dated April 29, 2014.

NPAG.  2013.  Cucumber green mottle mosaic virus (CGMMV).    New Pest Advisory Group, Plant Epidemiology and risk Analysis Laboratory, Center for Plant Health Science & Technology, USDA-APHIS.  NPAG Report 20130819.docx, August 19, 2013: 1-9.

QDAF.  2017.  Cucumber green mottle mosaic virus. The State of Queensland Department of Agriculture and Fisheries, Queensland Government. https://www.daf.qld.gov.au/plants/health-pests-diseases/a-z-significant/cucumber-green-mottle-mosaic-virus# Last updated 01 March, 2017.

Rao A. L. N, and A. Varma. 1984. Transmission studies with cucumber green mottle mosaic virus. Phytopathologische Zeitschrift, 109(4):325-331.

Shang, J., Y. Xie, X. Zhou, Y. Qian, and J. Wu.  2011.  Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus.  Virology Journal 8:228.

Schnabel, D.  2017.  Email from D. Schnabel, CDFA, to S. Brown and J. Chitambar, CDFA.  Subject: CGMMV. Dated December 11, 2017, 7:16 am.

Reingold V., E. Lachman, A. Koren, and A. Dombrovsky.  2015.  Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds.  Plant Pathology 64: 245-255.

Reingold V., E. Lachman, O. Beelausov, A. Koren, N. Mor, and A. Dombrovsky.  2016. Epidemiological study of Cucumber green mottle mosaic virus in greenhouses enables reduction of disease damage in cucurbit production. Annals of Applied Biology 168:29-40.

Technical Working Group Responses: Cucumber green mottle mosaic virus.  October 28, 2013.  United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine.

Tesoriero, L. A., G. Chambers, M. Srivastava, S. Smith, B. Conde, and L. T. T. Tran-Nguyen.  2016.  First report of cucumber green mottle mosaic virus in Australia. Australasian Plant Disease Notes, 11:1. http://link.springer.com/article/10.1007/s13314-015-0186-x

Tian, T., K. Posis, C. J. Maroon-Lango, V. Mavrodieva, S. Haymes, T. L. Pitman, and B. W. Falk.  2014.  First report of Cucumber green mottle mosaic virus in melon in the United States.  Plant Disease 98:1163.

USDA APHIS.  July 25, 2013.  Email communication from K. J. Handy, CAPS Database Manager, USDA APHIS PPQ, PDEP to R. A. Bailey (and other APHIS members)  Director, PHPPS, CDFA. Subject: FW: confirmed id: Cucumber green mottle mosaic virus (CGMMV) detection in melon in CA – new US record.

USDA PCIT.  2017.  USDA Phytosanitary Certificate Issuance & Tracking System. December 14, 2017, 3:49:31 pm CDT. https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp

Zhang, J. W., K-S. Ling, and R. Cramer.  2014.  New Cucumber threat studied.  https://www.greenhousecanada.com/inputs/crop-protection/march-april-2014-4021


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A


Posted by ls

Diaporthe pseudophoenicicola R. R. Gomes, C. Glienke & Crous 2013

California Pest Rating for
Diaporthe pseudophoenicicola R. R. Gomes, C. Glienke & Crous 2013
Pest Rating: C

PEST RATING PROFILE
Initiating Event:

On June 15, 2017, a shipment of an unknown plant, exhibiting symptoms of leaf spotting and destined to a commercial florist in Los Angeles County, was intercepted by the CDFA Dog Team in Los Angeles County.  The shipment had originated in Kilgore, Texas.  A sample of symptomatic leaves was submitted to the CDFA Plant Pathology Lab for disease diagnosis.  On July 7, 2017, Suzanne Latham, CDFA plant pathologist, detected the fungal pathogen, Diaporthe pseudophoenicicola, in culture and confirmed its identity by PCR testing, as the cause for the disease.  Later, on July 19, 2017, the same pathogen was detected in a date palm (Phoenix dactylifera) sample exhibiting decline and canker symptoms and collected from a tree located off Interstate 5 (I-5), in Orange County.  The sample was collected by Orange County Agricultural officials and sent to the CDFA Plant Pathology Lab for diagnosis.  Suzanne Latham detected D. pseudophoenicicola in culture and confirmed its identity by multi-locus sequencing.  Later, the identity of the pathogen was also confirmed by the USDA APHIS Mycology and Nematology Genetic Diversity and Biology Laboratory at Beltsville, Maryland (Kennedy, 2017).   The current status and rating of D. pseudophoenicicola in California is assessed here and a permanent rating is proposed.

History & Status:

Background:  Diaporthe pseudophoenicicola is a fungal plant pathogen belonging to the order Diaporthales.  The species was named after its morphological similarity to Diaporthe phoenicicola, which was originally isolated from dead leaves of Mangifera indica in Pakistan, however, later reported to differ morphologically from D. phoenicicola (Gomes et al., 2013).  Diaporthe pseudophoenicicola is the sexual state of the pathogen, whereas, the asexual state belongs to the genus Phomopsis.  Presently, D. pseudophoenicicola has only been reported from China, Iraq, and Spain (Farr & Rossman, 2017; Gomes, et al., 2013).

The asexual state of the fungal pathogen has been detected in California prior to the 2017 detection.  In 2007, during a CDFA survey for palm wilt in Southern California, 16 detections were made of unidentified Phomopsis sp. on Phoenix canariensis, P. dactylifera, and P. reclinata in 10 counties.   Only recently, was the Phomopsis species that was detected on P. dactylifera in Riverside County, identified through DNA sequencing as P. pseudophoenicicola (syn. Diaporthe pseudophoenicicola), thereby, indicating that this pathogen has already been established in California for at least 10 years.  Complete identification of the remaining Phomopsis sp. is pending (personal communication: Suzanne Latham, CDFA).

Disease Development While specific information is lacking, it is likely that plant infection and disease development caused by Diaporthe pseudophoenicicola are similar to those caused by other species of Diaporthe occurring as plant pathogens, endophytes or saprobes.  The fungus produces ascospores (sexual spores) in perithecia (sexual fruiting bodies) and conidia (asexual spores) in pycnidia on dead twigs and leaves.  Conidia are the main inoculum causing primary and secondary infections and are spread to host plants by splashing rains.  Ascospores may be involved in long distance dispersal of the pathogen.  The fungus is likely to overwinter as mycelium and/or as conidia within pycnidia (Agrios, 2005).

Dispersal and spread: Windblown/splashing rain and irrigation water, pruning tools, possibly insects, and animals can spread fungal spores to non-infected plants.

Hosts: Mangifera indica (mango), Phoenix dactylifera (date palm), P. canariensis (Canary Island palm) (Farr & Rossman, 2017; Gao et al., 2017; Gomes et al., 2013).

Symptoms:  Diaporthe pseudophoenicicola causes symptoms of dieback and canker in infected mango and date palm.  Dead tops of green leaves have been reported for date palms (Farr & Rossman, 2017; Gomes et al., 2013).

Damage Potential: Quantitative losses caused by Diaporthe pseudophoenicicola have not been reported. The pathogen causes dieback and cankers in mango and date palm.  Therefore, if left uncontrolled, infections may result in reduced fruit and plant production and marketability.  In California, nurseries and other growers of mango and date palms plants may be at risk of damage caused by this pathogen.

Worldwide Distribution: Asia: China, Iraq; Europe: Spain (Farr & Rossman, 2017; Gomes et al., 2013); North America: USA (California) (see: “Initiating Event”).

Official Control: No official control is reported for Diaporthe pseudophoenicicola or Diaporthe spp., however, Phomopsis spp. is presently on the ‘Harmful Organism List’ for French Polynesia (USDA PCIT, 2017).  Currently, D. pseudophoenicicola has a temporary Q rating in California.

California Distribution:  Los Angeles, Orange, and Riverside Counties.

California Interceptions: There has been only one interception.  On July 7, 2017, Diaporthe pseudophoenicicola was detected in a shipment of an unknown plant that originated in Texas (see: ‘Initiating Event’).

The risk Diaporthe pseudophoenicicola would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Mango and palm are the only known hosts and are grown in California.  Diaporthe pseudophoenicicola may be able to infect its hosts under wet conditions and is therefore, only likely to establish in very limited regions of the State where mango and palm are grown mainly Southern California.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 1

Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: The host range of the pathogen is presently limited to Mangifera indica and Phoenix dactylifera.

Evaluate the host range of the pest.

Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Diaporthe pseudophoenicicola has high reproductive potential with an abundant production of spores, however, the spores are dependent on splashing water for dispersal.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 2

– Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Quantitative losses caused by Diaporthe pseudophoenicicola have not been reported. Under favorable wet conditions for spread and disease development the pathogen may cause dieback and cankers in mango and palm.  Therefore, if left uncontrolled, infections may result in reduced fruit and plant production and marketability.  In California, nurseries and other growers of mango and date palms plants may be at risk of damage caused by this pathogen.,

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact:  The pathogen may impact palms used as ornamental plantings in commercial and private environments.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Diaporthe pseudophoenicicola: Medium (9)

Add up the total score and include it here.

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Evaluation is Low.  The pathogen is already established in at least three counties in Southern California.

Score: (-1)

-Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 8

Uncertainty:  

Identification of Phomopsis sp. (asexual state of Diaporthe) detected during the 2007 CDFA survey, is pending.  Positive identification may provide new information on the distribution and hosts of D. pseudophoenicicola in California, while further stabilizing its currently proposed rating.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Diaporthe pseudophoenicicola is C.


References:

Agrios, G. N.  2005.  Plant Pathology Fifth Edition.  Elsevier Academic Press.  922 p.

Farr, D. F., and A. Y. Rossman.  2017.  Fungal Databases, U. S. National Fungus Collections, ARS, USDA. Retrieved September 20, 2017, from http://nt.ars-grin.gov/fungaldatabases/

Gao, Y., F. Liu, W. J. Duan, P. W. Crous, and L. Cai.  2017.  Diaporthe is paraphyletic. IMA Fungus 8(1): 153-187.

Gomes, R.R., C. Glienke, S. I. R. Videira, L. Lombard, J. Z. Groenewald, and P. W. Crous.  2013.  Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1-41.

Kennedy, A. H.  2017.  Email from A. H. Kennedy, Molecular Biologist, USDA APHIS Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, Maryland, to Suzanne Latham, Plant Pathologist, CDFA Plant Pest Diagnostics Branch, dated September 01, 2017, 5:14 am.

USDA PCIT.  2017.  USDA Phytosanitary Certificate Issuance & Tracking System. Sept. 20, 2017, 2:11:43 pm CDT.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: C


Posted by ls

Colletotrichum cliviae Y.L. Yang, Zuo Y. Liu, K.D. Hyde & L. Cai, 2009

California Pest Rating for
Colletotrichum cliviae Y.L. Yang, Zuo Y. Liu, K.D. Hyde & L. Cai, 2009
PEST RATING: B

PEST RATING PROFILE
Initiating Event:

On October 17, 2017, diseased leaves of variegated croton plants (Codiaeum variegata) exhibiting leaf spotting symptoms, were collected from a nursery in San Diego, by San Diego County officials and sent to the CDFA Plant Pathology Laboratory for diagnoses.  The shipment of croton plants had originated from Florida.  On November 20, 2017, Suzanne Latham, CDFA plant pathologist, identified the pathogen, Collectotrichum cliviae, as the cause for the disease. Furthermore, during 2015-2016, CDFA detections of anthracnose disease of Cymbidium sp., Aglaonema sp., and Dieffenbachia sp. plants in nurseries in San Diego County in California, were attributed to Colletotrichum cf. cliviae (‘cf’ in biological terminology means ‘a significant resemblance to’).  Those detections initiated, and were included in, a pest rating assessment for the closely similar species, C. cliviae, which was eventually given a permanent B-rating. However, those detections were recently shown to be, instead, C. aracearum (Kennedy, 2017; Latham, 2017).  The recent detection of C. cliviae in San Diego marked the first record of this pathogen in California. Consequently, the infected plants were treated by the nursery and are to be periodically re-inspected (Walber, 2017).  The risk of the introduction and establishment of C. cliviae, and its current rating in California are re-evaluated here.

History & Status:

Background Colletotrichum cliviae causes anthracnose and leaf blight disease in its host plants.  The fungal pathogen was originally reported from Clivia miniata (clivia/flame/bush/kaffir lily) leaves growing in Yunnan Province, China and reported as not being host-specific (Yang et al., 2009). Since then, C. cliviae has been found on few tropical and subtropical hosts from China, India, Brazil, and recently, from the USA (California).

Hosts: Arundina graminifolia (Bamboo orchid), Camellia sinensis (tea plant), Clivia miniata (Kaffir lily), Capsicum annuum (pepper), Capsicum sp., Cymbidium hookerianum (orchid), C. pendulum, Glycine max (soybean), Mangifera indica (mango) Phaseolus sp. (bean), Ricinus communis (castor), Saccharum sp., Zamioculcas zamiifolia (Barbieri et al., 2017; Chowpadda et al., 2014; Diao et al., 2017; Farr & Rossman, 2016; Lui et al., 2015; Saini et al., 2017; Sharma et al., 2014; Vieira et al., 2014; Yang et al., 2009; Zhang & Li, 2017).  The recent host, Codiaeum variegata (variegated croton) is added to this list (see ‘Initiating Event’).

Symptoms:  Generally, Colletotrichum-infected host plants exhibit symptoms of anthracnose which include dark brown leaf, stem and fruit spots, fruit rot, and wilting of leaves which often result in dieback and reduction in plant quality. Colletotrichum cliviae produce dark brown to black, ellipsoid lesions in orchid leaves of Cymbidium hookerianum and Arundina graminifolia.  The lesions contain pale yellow conidial (spore) masses (Yang et al., 2011).

Damage Potential:  Anthracnose disease caused by Colletotrichum cliviae can result in reduced plant quality and growth, fruit production and marketability.   Estimates of yield/crop loss due to this pathogen have not been reported. However, in California, nursery and greenhouse production of orchids, croton, and other host plants would be particularly at risk as nursery conditions are often conducive to infection by Colletotrichum species.  In California’s cultivated fields, disease development may be sporadic as it is affected by levels of pathogen inoculum and environmental conditions.

Disease Cycle:  It is likely that Colletotrichum cliviae has a similar life cycle to that of other Colletotrichum species and survives between crops during winter as mycelium on plant residue in soil, on infected plants, and on seeds.  During active growth, the pathogen produces masses of hyphae (stromata) which bear conidiophores, on the plant surface. Conidia (spores) are produced at the tips of the conidiophores and disseminated by wind, rain, cultivation tools, equipment, and field workers.   Conidia are transmitted to host plants.  Humid, wet, rainy weather is necessary for infection to occur.  These requirements in particular may limit the occurrence of the pathogen in California fields and subsequently, the pathogen may be more of a problem under controlled environments of greenhouses.  Conidia germinate, penetrate host tissue by means of specialized hyphae (appresoria) and invade host tissue.

Transmission:  Wind, wind-driven rain, cultivation tools, and human contact.

Worldwide Distribution: Asia: China, India; South America: Brazil (Farr & Rossman, 2016; Liu et al., 2015; Vieira et al., 2014; Yang et al., 2011).

Official Control Colletotrichum cliviae is reportable to the USDA.

California Distribution: Colletotrichum cliviae is not established in California.

California Interceptions Only one interception from Florida is recorded (see ‘Initiating Event).

The risk Colletotrichum cliviae would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Similar to other species of Colletotrichum, C. cliviae requires humid, wet, rainy weather for conidia to infect host plants. This environmental requirement may limit the ability of the pathogen to fully establish and spread under dry field conditions in California.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Presently, the host range of Colletotrichum cliviae is limited to few plant species in eight different families – mainly economically important orchid, mango, and nursery ornamentals.

Evaluate the host range of the pest.

Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: The pathogen has high reproductive potential and conidia are produced successively.  They are transmitted by wind, wind-driven rain, cultivation tools, and human contact however conidial germination and plant infection require long, wet periods.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Under suitable, wet climates, the pathogen could lower plant growth, fruit production and value and trigger the loss of markets. Nursery orchids and ornamentals, and mango production could be negatively affected.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: The pathogen could significantly impact cultural practices or home garden plantings.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact:

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Colletotrichum cliviae: Medium (11)

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction of Colletotrichum cliviae to California = (11).

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Not established in California (-1).

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 11.

Uncertainty:

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for the anthracnose pathogen, Colletotrichum cliviae is B.


References:

Diao, Y.-Z., C. Zhang, F. Liu, W. –Z, Wang, L. Liu, L. Cai,, and X. –L. Liu.  2017.  Colletotrichum species causing anthracnose disease of chili in China. Persoonia 38: 20-37.

Barbieri, M. C., G., M. Ciampi-Guillardi, S. R. G. Moraes, S. M. Bonaldo, F. Rogerio, R. R. Linhares, and N. S. Massola Jr.  2017.  First report of Colletotrichum cliviae causing anthracnose on soybean in Brazil. Plant Disease 101: 1677.

Chowpadda, P., C. S. Chethana, R. P. Pant, and P. D. Bridge.  2014.  Multilocus gene phylogeny reveals occurrence of Colletotrichum cymbidiicola and C. cliviae on orchids in north east India.  Journal of Plant Pathology 96: 327-334.

Farr, D. F., & A. Y. Rossman.  2016.  Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. Retrieved April 3, 2016, from

http://nt.ars-grin.gov/fungaldatabases/

Kennedy, A.  2017.  Email from A. H. Kennedy, Molecular Biologist, National Identification Services, USDA APHIS PPQ PM to John Chitambar, CDFA, sent: August 29, 2017, 12:54 pm.

Latham, S.  2017.  Email from A. H. Kennedy, Molecular Biologist, National Identification Services, USDA APHIS PPQ PM to Suzanne Latham, CDFA, sent: August 18, 2017, 12:11 pm.

Liu, F., B. S. Weir, U. Damm, P. W. Crous, Y. Wang, B. Liu, M. Wang, M. Zhang, and L. Cai. 2015. Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35: 63-86.  http://dx.doi.org/10.3767/003158515X687597.

Saini, T. J., S. G. Gupta, and R. Anandalakshmi.  2017.  Detection of chili anthracnose caused by Colletotrichum cliviae in India. Australasian Plant Disease Notes 12: 33.

Sharma G., A. K. Pinnaka, and B. D. Shenoy.  2013. ITS-based diversity of Colletotrichum from India. Current Research in Environmental & Applied Mycology 3: 194–220.

Vieira, W.A.S., S. J. Michereff, M. A. de Morais, Jr., K. D. Hyde, and M. P. S. Camara. 2014.  Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Diversity 67: 181-202.

Walber, T.   2017.  Email from G. Hernandez, San Diego County Department of Agriculture/Weights & Measures to T. Walber, CDFA Interior Pest Exclusion.  Dated: December 01, 2017, 11:28:29 am.

Weir, B. S., P. R. Johnston, and U. Damm.  2012.  The Colletotrichum gloeosporioides species complex.  Studies in Mycology, 73:115-180. DOI:10.3114/sim0011.

Yang, Y., L. Cai, Z. Yu, Z. Liu, and K. D. Hyde.  2011.  Colletotrichum species on Orchidaceae in southwest China.  Cryptogamie, Mycologie, 2011, 32 (3): 229-253.

Yang, Y.L., Z. Y. Liu, L. Cai, K. D. Hyde, Z. N. Yu, and E. H. C. McKenzie. 2009. Colletotrichum anthracnose of Amaryllidaceae. Fungal Diversity 39: 123-146.

Zhou, Z., and Y. L. Li.  2017.  First report of Colletotrichum cliviae causing anthracnose on Zamioculcas zamiifolia in Henan Province, China. Plant Disease 101(5): 838.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


PEST RATING: B


Posted by ls

Ustilago esculenta

California Pest Rating for
Ustilago esculenta Henn. 1895
PEST RATING: A

PEST RISK PROFILE


Initiating Event:   

On October 19 and 20, 2017, Manchurian wild rice plants with slightly swollen lower stems, were collected by Riverside County Agricultural officials, from a private company, in Riverside County and sent to the CDFA’s Plant Pathology Lab for possible detection of the smut fungus, Ustilago esculenta.  On November 20, 2017, Cheryl Blomquist, CDFA plant pathologist, detected U. esculenta, by PCR and sequencing, from the swollen, white interior plant tissue.   The current status and risk of U. esculenta to California is assessed here and a permanent rating is proposed.

History & Status:

Background:  Ustilago esculenta is a biotrophic (i.e., it has a long-term, non-lethal feeding relationship with an infected plant) smut fungus that incites formation of swollen culms or smut galls in the apical internodal (stem) region of perennial Manchurian wild rice, Zizania latifolia.  These swollen culms or smut galls are edible and have unique flavor and delicacy.  The swollen culms are consumed as a vegetable in India (Manipur), China, Japan, and Taiwan (Chung & Tzeng, 2004; Jose et al., 2016; Terrell & Batra, 1982).  In China and Japan, it is cultivated as a commercial food crop (Jose et al., 2016).  Furthermore, in Taiwan, and southern China, the production of galls occurs during the season of tropical storms and provides an alternate food source to consumers when cultivation of other vegetables is negatively affected.  Therefore, the fungus is considered highly beneficial and economically important (Chung & Tzeng, 2004).   Hennings (1895) originally discovered the pathogen, Ustilago esculenta in its infected host, Zizania latifolia, in China.

In the USA, Manchurian wild rice, Zizania latifolia, is prohibited entry into the country due to the smut fungus, Ustilago esculenta, that it carries (USDA, 2017).  Native species of wild rice may be at risk of infection and loss of production particularly since the fungus prevents development of inflorescences, thereby, affecting seed production (Terrell & Batra, 1982; Yamaguchi, 1990).

In 1991, an illegal 0.05-ha planting of Manchurian wild rice infected with Ustilago esculenta was discovered in a field near Modesto, California and marked the first report of the disease in a field situation in North America.  The plants had been brought into the USA in violation of federal quarantines and were eradicated (Watson et al., 1991).   In 1999, the host and pathogen were discovered in two small grower’s plots (approximately 2-ha total) in Baton Rouge, Louisiana.  The plants were eradicated in 2000 (NPAG, 2001).

Disease Development: Ustilago esculenta spends its entire life cycle in the host plant.  The fungus grows within and between plant cells in the stem tissues, particularly near the apical meristem.  However, the fungus is not systemically distributed throughout the entire plant and does not invade leaf and root tissue (Chen & Tzang, 1999, Jose et al., 2016).  Chen and Tzang (1999), using PCR technology, found the fungal DNA in the growth tip of Manchurian wild rice plants and not in leaves and healthy plant tissue.  They also detected the fungus in the sheath of infected plants even when there were no outward signs of its presence.  The fungus prevents production of inflorescence and galls develop at the internode region beneath the apical meristem.  Galls are formed within 10-15 days even though the plants may have been planted in the soil for over 8 months. Internally, gall formation involves hypertrophy (increase in cell size), hyperplasia (increase in cell numbers), and presence of mucilaginous cavities (Chan & Thrower, 1980).  At this developmental stage, the inner tissue of a gall appears white and filled with fungal hyphae which later develop to form dark teliospores (sexual spores) within the gall.  Teliospore formation is favored at temperatures greater than 28°C (Chung & Tzeng, 2004). In China, the edible galled plants are harvested for consumption prior to the production of teliospores.  With time, black longitudinal streaks appear, and eventually, the entire stem turns black and deteriorates.  Furthermore, a lack of nutrients in a plant or low water level in a field initiate earlier production of the reproductive stage of the fungus, thereby, reducing quality and yield of the plants (Yamaguchi, 1990).  The optimum temperature for fungal growth is 20-28°C and the optimum pH range is 4-7. The fungus may overwinter as mycelium and teliospores in the grass rhizomes and be transmitted into new shoots through asexual propagation of the plant.  Alternatively, teliospores from decomposed galls, may survive in soil (Chung & Tzeng, 2004).  Jose et al., (2016) detected spores and fragmented hyphae in the rhizomes throughout the year, including the month of January during which the above ground culms degenerated, thereby, suggesting that it may serve as inoculum for infection.

Dispersal and spread: Plant rhizomes, galled stems, and soil (Jose et al., 2016; Chung & Tzeng, 2004).

Hosts: Zizania spp. in the family Poaceae: Z. aquatica, Z. latifolia (syn. Z. caduciflora), and Zizania sp.

Symptoms: Ustilago esculenta stimulates the swelling of the culms of its host grass plants resulting in the formation of edible galls at the internodal region beneath the apical meristem (stem base).  The galls are about 3-4 cm in width and 15-20 cm in length (Chung & Tzeng, 2004).  Infected plants do not show any typical disease symptoms despite the internal presence of the fungus (Jose et al., 2016). Experimentally, plant infected with U. esculenta showed a decrease in height, but significant increase in above-ground biomass and higher chlorophyll content (Yan et al., 2013).

Damage Potential: Ustilago esculenta prevents the production of inflorescences in host plants thereby, significantly reducing seed production and resulting in great yield loss (Terrell & Batra, 1982; Chen & Tzeng, 1999).  Production of wild rice, including near relatives of Zizania latifolia, in California may be significantly reduced by the fungus.

Worldwide Distribution: Asia: Cambodia, China, Hong Kong, India, Japan, Laos, Malaysia, Myanmar, (east and south Asia), Taiwan, Thailand, (former) USSR, Vietnam; North America: USA (District of Columbia) (Farr & Rossman, 2017).

Official Control:  Ustilago esculenta, with its host plant, Zizania spp., are prohibited from being imported or offered for entry into the United States by the USDA, and are on the Prohibited Articles List under Federal Regulations 7CFR 319.37-2 (USDA, 2017).

California Distribution: Ustilago esculenta is not established in California.

California Interceptions In 1998, there was one interception of Manchurian wild rice infested with Ustilago esculenta destined to a private business in San Bernardino County.  The shipment was destroyed.

In 1991, a foreign-sourced, illegal planting of Manchurian wild rice infected with Ustilago esculenta was detected in a field near Modesto.  The plants were eradicated.

The risk Ustilago esculenta would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Ustilago esculenta is likely to establish wherever wild rice, Zizania, is cultivated in California.  California wild rice is grown under warm, dry, clear days, and a long growing season; mostly on fine-textured, poorly-drained soils (Farrar, 2000).   Since the fungus is limited to Zizania spp., and is likely to establish wherever native species of wild rice are grown in California, its potential distribution is considered widespread and a ‘High” rating is given to this category.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 3

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range:  The host range is limited to Zizania

Evaluate the host range of the pest.

Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: The fungus is biotrophic and is dependent on the spread infested galled plants for long distance spread.  It is also transmitted in propagative rhizomes and soil.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Ustilago esculenta prevents the production of inflorescences in host plants thereby, drastically reducing seed production and resulting in great yield loss.  The fungus and its vectoring host, Zizania latifolia, are prohibited entry in the USA , and would be a threat to native species of wild rice that are grown in California

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C, D, E

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: Ustilago esculenta, either through the establishment of infected Zizania latifolia or its direct impact on the stand and cultivation of California native wild rice species, can result in reducing native stands of wild rice by reducing seed production, thereby, disrupting aquatic plant and animal communities, critical habitats, and lowering biodiversity.  This could result in additional official treatment programs. A “High” rating is given to this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: A, C, D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Ustilago esculenta: High (13)

Add up the total score and include it here.

-Low = 5-8 points

-Medium = 9-12 points

High = 13-15 points

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Evaluation is Low.  Ustilago esculenta is not established in California.

Score: 0

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 13

Uncertainty:   

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Ustilago esculenta is A.


References:

Chan, Y-S., and L. B. Thrower.  1980.  The host-parasite relationship between Zizania caduciflora Turcz. and Ustilago esculenta P. Henn. 1. Structure and development of the host and host-parasite combination.  New Phytopathology 85: 201-207.

Chen, R-S., and D. D-S. Tzeng.  1999.  PCR-mediated detection of Ustilago esculenta in water oat (Zizania latifolia) by ribosomal internal transcribed spacer sequences.  Plant Pathology Bulletin 8: 149-156.

Chung, K., and D. D. Tzeng.  2004.  Nutritional Requirements of the Edible Gall-producing Fungus Ustilago esculenta. Journal of Biological Sciences, 4(2), 246-252.

Farr, D. F., and A. Y. Rossman.  2017.  Ustilago esculenta.  Fungal databases, U.S. National Fungus Collections, ARS, USDA. Retrieved November 28, 2017, from https://nt.ars-grin.gov/fungaldatabases/

Farrar, K.  2000.  Crop profile for wild rice in California. California Pesticide Impact Assessment Program, University of California, Davis, CA. http://www.ipmcenters.org/CropProfiles/docs/cawildrice.pdf

French, A.M. 1989. California Plant Disease Host Index. California Department of Food and Agriculture, Sacramento (Updated online version by T. Tidwell, May 2, 2017).

Jose, R. C., S. Goyari, B. Louis, S. D. Waikhom, P. J. Handique, and N. C. Talukdar.  2016.  Investigation on the biotrophic interaction of Ustilago esculenta on Zizania latifolia found in the Indo-Burma biodiversity hotspot.  Microbial Pathogenesis 98: 6-15.

NPAG.  2001.  NPAG report sent to Trillium.  20. Ustilago esculenta (Basidiomycota: Ustilaginomycetes: Ustilaginaceae) wild rice smut.  New Pest Advisory Group Plant Epidemiology and Risk Analysis Laboratory, Center for Plant Health Science & Technology.

Terrell, E. E., and L. R. Batra.  1982.  Zizania latifolia and Ustilago esculenta, a grass-fungus association. Economic Botany 36: 274-285.

USDA.  2017.  Plants for plant manual. United States Department of Agriculture.  First edition March 2017.

Watson, T., T. E. Tidwell, and D. G. Fogle.  1991.  Smut of Manchurian wild rice caused by Ustilago esculenta in California.  Plant Disease 95: 1075. DOI: 10.1094/PD-75-1075D.

Yamaguchi, M. (1990). Asian vegetables. In J. Janick & J. E. Simon (Eds.), Advances in new crops, 387-390. Timber Press, Portland, OR.

Yan, N., X-Q. Wang, X-F. Xu, D-P. Guo, Z-D. Wang, J-Z. Zhang, K. D. Hyde, and H-L. Liu.  2013.  Plant growth and photosynthetic performance of Zizania latifolia are altered by endophytic Ustilago esculenta infection. https://doi.org/10.1016/j.pmpp.2013.05.005


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


PEST RATING: A


Posted by ls

Colletotrichum aracearum

California Pest Rating for
Colletotrichum aracearum L. W. Hou & L. Cai 2016
PEST RATING: B

PEST RATING PROFILE
Initiating Event:  

On July 28, 2017, diseased Cymbidium sp. plants exhibiting leaf spots, were detected by the CDFA Dog Team, in a shipment of plants that had originated in and was destined to a private resident in San Diego County.  Symptomatic leaves were sent to the CDFA Plant Pest Diagnostics Branch for diagnosis.  On August 21, 2017, Suzanne Latham, CDFA plant pathologist, detected the fungal pathogen, Colletotrichum aracearum, in culture from the leaf spots.  The identity of the pathogen was also confirmed by the USDA APHIS National Identification Services at Beltsville, Maryland (Kennedy, 2017).  Currently, C. aracearum has a temporary ‘Q’ rating.  The risk of introduction and establishment of C. aracearum in California is assessed and a permanent rating is proposed herein.

History & Status:

Background Colletotrichum aracearum causes anthracnose disease in its host plants. The recently described species (Hou et al., 2016) has only been reported from China, until its detection in California, USA.   In California, prior to the July 28, 2017 detection of Colletotrichum aracearum (see ‘Initiating Event’), there had been several detections of the pathogen which was then identified as Colletotrichum cf. cliviae (‘cf’ in biological terminology means ‘a significant resemblance to’).  However, those detections were recently shown to be C. aracearum (Kennedy, 2017; Latham, 2017).   The first detection of C. aracearum (then identified as Colletotrichum cf. cliviae) was made on April 28, 2015, from diseased Dieffenbachia sp. plants exhibiting leaf spots and detected in a nursery in San Diego County during regulatory nursery inspections by the San Diego County Agricultural officials. This marked a probable new U.S. record by the USDA National Identification Services at Beltsville, Maryland. Several detections followed from different nurseries within San Diego County.  On June 11, 2015 and August 19, 2015, the same pathogen was detected in Chinese evergreen (Aglaonema sp.) leaves from cuttings that were shipped from Guatemala and intercepted by San Diego County, and from diseased Aglaonema sp. plants detected during regulatory nursery inspections.  On December 3, 2015 and April 20, 2016, infected Aglaonema sp. were intercepted in plant shipments from Costa Rica, and on April 29, 2016, during  regulatory nursery inspections, the pathogen was detected in Cymbidium sp. orchid plants showing leaf spots.   In all these cases, subsequent to the detection of the pathogen, infected plant shipments/nursery stock were either destroyed or rejected from entering California. The presence and status of anthracnose disease caused by C. aracearum in Guatemala and Costa Rica have not been reported.

Hosts: Aglaonema sp. (Chinese evergreen), Cymbidium sp. (orchid), Dieffenbachia sp. (CDFA detection records 2015-2017), Monstera deliciosa (Swiss cheese plant/tarovine/windowleaf), Philodendron selloum (cut-leaf philodendron) (Farr & Rossman, 2016; Hou et al., 2016).

Symptoms:  Generally, Colletotrichum-infected host plants exhibit symptoms of anthracnose which include dark brown leaf, stem, and fruit spots or lesions, fruit rot, and wilting of leaves which often result in dieback and reduction in plant quality.

Damage Potential:  Anthracnose disease caused by Colletotrichum aracearum can result in reduced plant quality and growth, fruit production and marketability.   Estimates of yield/crop loss due to this pathogen have not been reported. However, in California, nursery and greenhouse production of orchids, Chinese evergreen, dieffenbachia, and other host plants are particularly at risk as nursery conditions are often conducive to infection by Colletotrichum species.  In California’s cultivated fields, disease development may be sporadic as it is affected by levels of pathogen inoculum and environmental conditions.

Disease Cycle:  It is likely that Colletotrichum aracearum has a similar life cycle to that of other Colletotrichum species and survives between crops during winter as mycelium on plant residue in soil, on infected plants, and on seeds.  During active growth, the pathogen produces masses of hyphae (stromata) which bear conidiophores, on the plant surface. Conidia (spores) are produced at the tips of the conidiophores and disseminated by wind, rain, cultivation tools, equipment, and field workers.   Conidia are transmitted to host plants.  Humid, wet, rainy weather is necessary for infection to occur.  These requirements in particular may limit the occurrence of the pathogen in California fields and subsequently, the pathogen may be more of a problem under controlled environments of greenhouses.  Conidia germinate, penetrate host tissue by means of specialized hyphae (appresoria) and invade host tissue.

Transmission:  Wind, wind-driven rain, cultivation tools, and human contact.

Worldwide Distribution: Asia: China; North America: USA (Farr & Rossman, 2017; Hou et al., 2016).  Currently, in the USA, C. aracearum has only been reported from California.

Official Control In California C. aracearum is an actionable, Q-rated pathogen, and infected plant material is subject to destruction or rejection.  Colletotrichum aracearum is reportable to the USDA.

California Distribution: San Diego County (see “Background”).

California Interceptions During 2015-17, four shipments of Colletotrichum aracearum-infected Aglaonema sp. (Chinese evergreen) cuttings and one of Cymbidium sp. were intercepted in California.  The shipments had originated Guatemala, Costa Rica, and China (see ‘Background’ and ‘Initiating Event’.).

The risk Colletotrichum aracearum would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Similar to other species of Colletotrichum, aracearum requires humid, wet, rainy weather for conidia to infect host plants. This environmental requirement may limit the ability of the pathogen to fully establish and spread under dry field conditions in California

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Presently, the host range of Colletotrichum aracearum is limited to few nursery ornamental plant species belonging to the family Araceae.

Evaluate the host range of the pest.

Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential:  The pathogen has high reproductive potential and conidia are produced successively.  They are transmitted by wind, wind-driven rain, cultivation tools, and human contact however conidial germination and plant infection require long, wet periods.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Under suitable, wet climates, the pathogen could lower plant growth, fruit production and value and trigger the loss of markets. Nursery-grown orchids and other ornamental host plants could be negatively affected.

Evaluate the economic impact of the pest to California using the criteria below.

Score: A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: The pathogen could significantly impact cultural practices or home garden plantings.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Colletotrichum aracearum: Medium (11)

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction of Colletotrichum aracearum to California = (11).

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Low (-1) Colletotrichum aracearum was detected in a nursery in San Diego County.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 10.

Uncertainty:

The host range of Colletotrichum aracearum is presently limited to few plants in Araceae.  Further host range studies are needed.  Also, results of detection surveys for C. aracearum in nursery, commercial, and natural environments within California may alter its proposed rating.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for the anthracnose pathogen, Colletotrichum aracearum is B.


References:

Farr, D. F., & A. Y. Rossman.  2016.  Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. Retrieved April 3, 2016, from

http://nt.ars-grin.gov/fungaldatabases/

Hou, L.W., F. Liu, W. J. Duan, and L. Cai. 2016. Colletotrichum aracearum and C. camelliae-japonicae, two holomorphic new species from China and Japan. Mycosphere 7(8): 1111-1123.

Kennedy, A.  2017.  Email from A. H. Kennedy, Molecular Biologist, National Identification Services, USDA APHIS PPQ PM to John Chitambar, CDFA, sent: August 29, 2017, 12:54 pm.

Latham, S.  2017.  Email from A. H. Kennedy, Molecular Biologist, National Identification Services, USDA APHIS PPQ PM to Suzanne Latham, CDFA, sent: August 18, 2017, 12:11 pm.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: B


Posted by ls

Plasmopara constantinescui Voglmayr & Thines 2007

California Pest Rating for
Plasmopara constantinescui Voglmayr & Thines 2007
Pest Rating: B

PEST RATING PROFILE

Initiating Event:

On August 8, 2017, diseased leaves of Impatiens walleriana plants were collected, from a retail nursery in Placer County, by Placer Agricultural County officials and sent to the CDFA Plant Pathology Laboratory for diagnoses.  The plants had been shipped from a different nursery in San Joaquin County.  Cheryl Blomquist, CDFA plant pathologist, identified the downy mildew pathogen, Plasmopara constantinescui, as the cause for the disease.  The pathogen was assigned a temporary ‘Q’ rating.  Consequently, the infected plants, received at Placer County, will be destroyed by County officials (Walber, 2017).  Impatiens walleriana plants related to the shipment from San Joaquin County were double-bagged and disposed at a landfill, by the nursery (Khan, 2017).  The risk of introduction and establishment of this pathogen in California is assessed and a permanent rating is herein proposed.

History & Status:

Background:   Plasmopara constantinescui is an obligate oomycete plant pathogen that causes downy mildew disease in its host plants.  Presently, the host range for the pathogen only includes Impatiens species, belonging to the plant family Balsaminaceae.

Plasmopara constantinescui was originally described as Bremiella sphaerosperma from Impatiens in eastern Russia and northeastern North America (Constantinescu, 1991).  However, after molecular phylogenetic analyses of DNA sequences, B. sphaerosperma was found to belong to the genus Plasmopara and transferred there accordingly.  Furthermore, as there already existed, within Plasmopara, a species by the same epithet, the newly-transferred pathogen was given a new epithet, P. constantinescui (Voglmayr & Thines, 2007).  This species was also shown to be closely related to Plasmopara obducens, which is a common, widely distributed pathogen of several species of Impatiens in the Northern Hemisphere, including California (Constantinescu, 1991; Voglmayr & Thines, 2007).

Hosts:  Impatiens sp. (impatiens), I. capensis (jewel weed), I. noli-tangere (western touch-me-not), I. pallida (pale touch-me-not) (Constantinescu, 1991; Farr & Rossman, 2017).  Plasmopara constantinescui was recently detected in Impatiens walleriana (buzzy lizzy) plants (see: ‘Initiating Event’.) 

Symptoms:  Pale yellowish to ochre, round to irregular, and scattered spots appear on the upper surface of leaves.  These spots are small (1-6 mm-diam.), vein-limited, and with margins that are indistinct to reddish brown or violaceous.  They rarely coalesce and cover larger areas.  White to greyish or yellowish downy growth of sporangiophores of the oomycete develop in patches on the underside of the spots (Constantinescu, 1991).  It is likely that, similar to other downy mildew-causing pathogens, Plasmopara constantinescui attacks and spreads rapidly in young, tender green leaf, shoot, and blossom tissue (Agrios, 2005).

Disease development: Generally, downy mildew pathogens overwinter as thick-walled resting spores called oospores in plant debris in the soil or on weed hosts, and as mycelium in infected, but not dead, twigs.  Downy mildew develops and is severe under conditions that favor periods of prolonged leaf wetness and high relative humidity during cool or warm, but not hot, periods.  During rainy period in spring, the oospores germinate to produce a sporangium.  The sporangium or its zoospores are transmitted by wind or water to wet leaves near the ground where they infect through stomata of the lower leaf surface.  Mycelium develops and spreads into intercellular spaces of leaves.  When it reaches the sub-stomatal cavity, it forms a cushion from which sporangiophores arise and grow through the stoma.  Sporangia are produced at the tips of the sporangiophores and are transmitted by wind or rain to nearby non-infected plants (Agrios, 2005; Daughtrey et al., 1995).  In pathogenicity tests, Plasmopara constantinescui was able to cause systemic shoot infection of Impatiens walleriana (Personal communication: Suzanne Latham, CDFA plant pathologist).

Dispersal and spread: Wind, rain/water splash, infected plants and infected plant debris.

Damage Potential: While estimates of crop losses caused particularly by Plasmopara constantinescui have not been reported, generally, downy mildews can cause significant losses in short periods of time. Affected plants may result in defoliation, flower drop, and stem rot, similar to Impatiens walleriana plants infected with the closely related downy mildew species, P. obducens (Crouch et al., 2014).  Nurseries, private and public gardens, and landscape plantings may be at particular risk of contracting downy mildew disease caused by P. constantinescui.  Fungicidal control of the pathogen is possible, but may be difficult.  Under cool wet weathers, downy mildews are often uncontrollable and checked only when the weather turns dry and hot (Agrios, 2005).

Worldwide Distribution: Asia: Eastern Russia (formerly USSR); North America: Canada, USA (Indiana, Massachusetts, Wisconsin, Iowa, Maryland, Minnesota, Virginia, South Carolina, and California) (Constantinescu, 1991; Farr & Rossman, 2017; Voglmayr & Thines, 2007; CDFA Pest and Damage Record 2017).

Official Control:  Bremiella sphaerosperma (synonym of Plasmopara constantinescui) is on the ‘Harmful Organism List’ for Brazil (USDA PCIT, 2017).  Presently, P. constantinescui has a Q rating in California.

California Distribution:  Based on the source of diseased Impatiens, Plasmopara constantinescui is present in San Joaquin County

California Interceptions:  One intrastate interception in Placer County (see: Initiating Event).

The risk Plasmopara constantinescui would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: The downy mildew oomycete, Plasmopara constantinescui requires prolonged periods of leaf wetness and high relative humidity during cool or warm, but not hot, periods. These conditions for infection and development of the pathogen is likely to limit its establishment in California, to coastal regions in particular.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: The host range for the pathogen is limited to Impatiens

Evaluate the host range of the pest.

Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Spores are produced in abundance. The pathogen is transmitted via infected plant material, winds, and rain/water splash.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: If left uncontrolled, downy mildews can cause significant losses in short periods of time. Affected plants may result in defoliation, flower drop, and stem rot, thereby lowering crop yield and value in increasing production costs largely due to administration of control measures.  Fungicidal control of the pathogen is possible, but may be difficult.  Under cool wet weathers, downy mildews are often uncontrollable and checked only when the weather turns dry and hot.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C, D.

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score:  3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact:  Downy mildew disease caused by Plasmopara constantinescui could significantly impact home/urban, private and public gardens, and landscape plantings.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Plasmopara constantinescui:

Add up the total score and include it here. 11

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Evaluation is ‘Low’Based on the source of diseased Impatiens, Plasmopara constantinescui is only present in San Joaquin County.

Score: (-1)

-Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 10.

Uncertainty:  

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Plasmopara constantinescui is B.

References:

Agrios, G. N.  2005.  Plant Pathology fifth edition.  Elsevier Academic Press, Massachusetts, USA.  922 p.

Calflora.  2017.  Information on California plants for education, research and conservation. [web application]. 2017. Berkeley, California. The Calflora Database [a non-profit organization].  http://www.calflora.org/

Constantinescu, O. 1991. Bremiella sphaerosperma sp. nov. and Plasmopara borreriae comb. nov. Mycologia 83: 473-479.

Crouch, J. A., M. P. Ko, and J. M. McKemy.  2014.  First report of impatiens downy mildew outbreaks caused by Plasmopara obducens through the Hawai’ian Islands.  Plant Disease, 98: 696.  DOI: https://doi.org/10.1094/PDIS-10-13-1017-PDN

Daughtrey, M. L., R. L. Wick, and J. L. Peterson.  1995.  Downey mildews.  Part I. infectious diseases, diseases caused by fungi.  Compendium of flowering potted plant diseases.  APS Press, the American Phytopathological Society.  38-38 p.

Farr, D. F., and A. Y. Rossman.  2017.  Fungal Databases, U. S. National Fungus Collections, ARS, USDA. Retrieved September 7, 2017, from http://nt.ars-grin.gov/fungaldatabases/

French, A. M. 1989. California Plant Disease Host Index. California Department of Food and Agriculture, Sacramento (Updated online version by T. Tidwell, May 2, 2017).

Khan, S.  2017.  Email from S. Khan, CDFA Pest Exclusion, to T. Walber, CDFA Interior Pest Exclusion, and J. Chitambar, CDFA, dated 9/19/2017. 4:43 pm.

USDA PCIT.  2017.  USDA Phytosanitary Certificate Issuance & Tracking System. Retrieved September 7, 2017. 4:19:24 pm CDT.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.

Voglmayr, H., and M. Thines.  2007.  Phylogenetic relationships and nomenclature of Bremiella sphaerosperma (Chromista, Peronosporales). Mycotaxon 100: 11-20.

Walber, T.  2017.  Email from T. Walber, CDFA Interior Pest Exclusion, to J. Chitambar, CDFA, dated 9/8/2017, 9:44 am.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Pest Rating: B


Posted by ls

Phytophthora cactorum (Lebert & Cohn) J. Schröt. 1886

California Pest Rating Proposal for
Phytophthora cactorum (Lebert & Cohn) J. Schröt. 1886
Pest Rating: B

PEST RATING PROFILE
Initiating Event:

None.  The current risk and status of Phytophthora cactorum in California are reassessed and a permanent rating is proposed.

History & Status:

Background:  Phytophthora cactorum is an oomycete pathogen that has a very wide host range and can cause a wide range of disease symptoms including, root rot, collar and crown rot, fruit rot, and stem canker, usually in conjunction with other Phytophthora spp. in its hosts.  Phytophthora root and crown rot disease are among the most important soilborne diseases of stone fruits (Brown & Mircetich, 1995).  It is widespread in temperate regions of all continents and occurs in soils of natural forests, agricultural fields and orchards.  It can persist and spread in different environments and is capable of surviving in the soil as a saprophyte and by producing resting spores.

Phytophthora cactorum is widespread in California and has been found in several counties (see: “California Distribution”).  In California, P. cactorum has been found in several hosts: apple, avocado, apricot, American plum, European plum, Japanese plum, Myrobalan plum, sour cherry, sweet cherry, sweet almond, Mabaleb cherry, cherry laurel, peach, nectarine, pear, Southern California walnut, Northern California walnut, English walnut, strawberry, oval kumquat, sweet orange, kiwifruit, peony, rose, rhodendron, tomato, garden rhubarb, lilac, lily, calla lily, Didier’s tulip, tulip, garden snapdragon, western vervain, virbinum, blue blossom ceanothus, million bells, safflower, wild oats, daphne, white fir, Pacific madrone, chamise, manzanita, wild oats, coyote brush, incense cedar, beefwood, deodar cedar, eucalyptus, California buckthorn/coffeeberry, buckthorn, California flannelbush, toyon, common hop, holly, spicebush, carob, savin juniper, juniper, English laurel, redbay, Frasier’s photinia, chokeberry, Ponderosa pine, sticky cinquefoil, Formosa fire thorn, fire thorn, California live oak, valley oak, oak, cork oak, southern live oak, Indian hawthorn, redwood, giant sequoia, yew, and sticky monkey flower (French, 1989, CDFA Pest Damage Records).  The pathogen has also been recovered from various habitats including flowing water, stream and ditch banks, residential and public gardens, recreational areas, orchards, forests, and nurseries (Yakabe et al., 2009; CDFA Pest Damage Records).

Hosts: Phytophthora cactorum has a very wide host range of plants belonging to several families including, Aceraceae, Apocynaceae, Apiaceae, Araliaceae, Cactaceae, Cucurbitaceae, Cornaceae, Ebenaceae, Ericaceae, Fagaceae, Geraniaceae, Grossulariaceae, Hippocastanaceae, Juglandaceae, Lauraceae, Liliaceae, Oleaceae, Pinaceae, Proteaceae, Polygonaceae, Rutaceae, Rosaceae, Salicaceae, Solanaceae, Sterculiaceae, and Violaceae (CABI, 2017).

Farr and Rossman (2017) include 1332 records of hosts for Phytophthora cactorum and its synonyms.  Hosts include: Abies alba (silver fir), A. amabilis (Pacific silver fir), A. balsamea (balsam fir), A. balsamea var. phanerolepsis, A. concolor (white fir), A. firma (momi fir), A. fraseri (Fraser fir), A. magnifica var. shastensis (Shasta red fir), A. procera (noble fir), Abies sp., Acacia sp. (wattles/acacias), Acer spp. (maples), Actinidia chinensis (kiwi), A. deliciosa (fuzzy kiwifruit), Adenostoma fasciculatum (chamise), Aesculus hippocastanum (horse chestnut), Aesculus sp. (buckeye and horse chestnuts), Agonis flexuosa (Jervis Bay Afterdark), Alnus glutinosa (common alder/black alder), A. incana (grey alder/speckled alder), A. oregana (Oregon alder), Amygdalus persica (peach), Ananas comosus (pineapple), Anemone coronaria (poppy anemone/Spanish marigold), Angelica sp. (angelica), Annona cherimola (cherimoya), Antirrhinum sp., A. majus (snapdragon), Aquilegia sp. (columbine), Aralia cordata (spikenard), A. elata (Japanese angelica-tree), Arbutus menziesii (Pacific madrone/madrone), Arctostaphylos spp. (manzanita), Aster spp. (asters), Aucuba japonica (spotted laurel/Japanese laurel), Avena fatua (common wild oat), Baccharis pilularis (coyote brush),  Banksia spp. (banksia), Begonia sp. (begonia), Beta vulgaris var. crassa (beets), Betula lutea (yellow birch), B. pendula (silver birch), Betula sp. (birch), Boehmeria spp. (false nettles), Brassica oleracea var. bullata (Brussel sprouts), Brassica sp. (mustard), Brassolaeliocattleya sp. (orchid), Bryophyllum pinnatum (airplant), Buxus sp. (boxwood), Cactus sp., Calceolaria integrifolia (bush slipperwort), Calceolaria sp. (sweetshrub), Calibrachoa sp. (million bells), Callistephus chinensis (China aster), Calocedrus decurrens (California incense cedar), Calycanthus floridus (eastern sweetshrub), C. occidentalis (spicebush), Calytrix angulata (yellow starflower), Capsicum annuum (cayenne pepper), C. frutescens (chili pepper), Carica papaya (papaya), Carthamus tinctorius (safflower), Carya illinoinensis (pecan), Castanea sativa (sweet chestnut), Castanea sp., Casuarina sp. (beefwood), Catharanthus roseus (Madagascar periwinkle), Ceratonia siliqua (carob), Cereus spp., Cattleya sp. (cattleya orchid), Ceanothus thyrsiflorus (blue blossom ceanothus), Cedrus deodara (deodar cedar), Ceratonia siliqua (carob tree),  Chamaecyparis spp. (false cypress), Chrysalidocarpus lutescens (areca palm/butterfly palm), Chrysanthemum spp., Citrullus lanatus (watermelon; syn. C. vulgaris), Citrus aurantium (bitter orange), C. grandis (pomelo; syn. C. maxima), C. limon (lemon), C. limonia (Mandarin lime), C. sinensis (sweet orange), Citrus sp., Clarkia spp., Cleome spp.,  Cocos nucifera (coconut), Cornus sp. (dogwood), C. sericea (western dogwood), Cucumis  melo var. inodorus (Kolkhoznitsa melon), C. melo var. reticulatus (galia melon), C. sativus (cucumber), C. pepo (field pumpkin), Dahlia sp., Daphne cneorum (rose daphne/garden flower), D. mezereum (February daphne), D. odora (winter daphne), Daphne sp., Dendrobium sp. (dendrobium orchid), Dianthus caryophyllus (carnation), Daucus carota (carrot), Diospyros kaki (persimmon), Diplacus aurantiacus (syn. Mimulus aurantiacus, sticky monkeyflower), Eriobotrya japonica (loquat), Echinochloa crusgalli (barnyardgrass), E. eyriesii, Epidendrum spp. (Epidendrum orchids), Erica hyemalis (cape heath), Eucalyptus spp., Fagus sp. (beeches) F. sylvatica (common beech), Fragaria spp. (strawberry), F. ananassa (strawberry), F. chiloensis (Chilean strawberry), F. vesca (wild strawberry), Frangula californica (coffeeberry/California buckthorn), Fraxinus spp., (ash), Fremontia californica (California flannelbush; syn. Fremontodendron californicum (California flannelbush), Fremontia sp., F. mexicanum (Mexican flannelbush), Fortunella margarita (oval kumquat), Galeandra baueri (orchid), Gladiolus sp., Glycine max (soybean), Hesperocyparis macrocarpa (syn. Cupressus macrocarpa, Monterey cypress), Heteromeles arbutifolia (toyon), Hibiscus spp. (rosemallows), Humulus lupulus (common hop), Ilex sp. (holly), Juglans californica (California black walnut), J. hindsii (Northern California walnut/Hinds’ black walnut), J. nigra (black walnut), J. pyriformis, J. regia (English walnut), Juglans sp., Juniperus procera (African juniper), J. sabina (savin juniper), Juglans. sp., Kalanchoe spp., Lactuca sativa (lettuce), Laeliocattleya sp. (orchid), Lilium spp. (lily), Lycopersicon esculentus (tomato; syn.  Solanum lycopersicum), Malus domestica (apple), Malus sp., M. sylvestris (European crab apple), Mespilus germanica (medlar), Panax quinquefolius (American ginseng), Pelargonium spp. (pelargonium), Paeonia lactiflora (Chinese peony/common garden peony), Paeonia spp. (peony), Panax spp. (ginseng), Persea americana (avocado), P. borbonia (redbay), Photinia spp. (photonia/chokeberry), Picea spp. (spruce), Pinus spp. (pine), Populus alba (silver-leaf poplar), Potentilla glandulosa (syn. Drymocallis glandulosa, sticky cinquefoil), Prunus armeniaca (apricot/American plum), P. avium (sweet cherry), P. cerasus (sour cherry), P. dulcis (almond; syn. P. amygdalus), P. ilicifolia (hollyleaf cherry/evergreen cherry), P. laurocerasus (cherry laurel/English laurel), P. mahaleb (mahaleb cherry), P. mume (Chinese plum/Japanese apricot), P. persica (peach), P. persica var. nucipersica (nectarine), P. salicina (Japanese plum), Prunus sp., Pyracantha coccinea (scarlet firethorn), , P. koidzumii (Formosa firethorn), Pyracantha sp. (fire thorn), Pyrus communis (European pear), Quercus agrifolia (California live oak/coast live oak), Q. falcata (southern red oak), Q. lobata (valley oak), Q. petraea (durmast oak), Q. robur, (English oak), Quercus sp., Q. suber (cork oak), Q. virginiana (live oak), Rhamnus (Frangula) californica (California coffeeberry), Rhaphiolepis indica (Indian hawthorn), Rheum rhaponticum (false rhubarb), Rheum hybridium (rhubarb), Rhododendron spp., (azalea), Ribes spp., (currants), R. lobbii (Lobbs gooseberry), R. uva-crispa (gooseberry), Rosa sp. (rose), Salix sp. ( willow), Sequoiadendron giganteum (giant sequoia), Solanum (nightshade), S. lycopersicum (tomato), Syringa vulgaris (lilac), Syringa sp., Taxus sp. (yew), Theobroma cacao (cocoa), Tulipa sp. (tulip), Tulipa gesneriana (Didier’s tulip), Viola sp. (violet), Vanda sp. (Vanda orchid), Verbena sp., V. lasiostachys (western vervain), Viburnum spp., Vicia faba (fava bean/broad bean), Vicia sp. (vetch), V. unguiculata, Vigna unguiculata (cowpea; syn. V. sinensis), V. cylindrica (catjang), V. sesquipedalis (yardlong bean), Vitis vinifera (grape ), Zea mays (corn), Zantedeschia sp. (calla lily) (CABI, 2017; Farr & Rossman, 2017; French, 1989; CDFA Pest Damage Records).

Symptoms: Phytophthora cactorum attacks a wide range of host plants causing varied symptoms, depending on the host.  Symptoms include root rot, collar and crown rot, fruit rot, stem cankers, leaf blight, wilts and seedling blights.  This pathogen can cause pre- and post-emergence damping-off disease in several plant species.  It has been reported to reduce sprouting and kill seedlings of beech, and cause seedling blight in Pinus spp., Salix scoulerana, and Robinia spp. (CABI, 2017).

On apple, pear and other woody hosts, P. cactorum causes crown, collar and root rot.  Crown rot affects rootstock tissue from the graft union down to the tips of the primary roots, whereas collar rot affects the scion above the graft union or slightly above the soil line.  Root rot refers to symptoms that appear beyond the proximal junction of primary roots to crown tissue (Cox, 2014).   Above ground symptoms are indicative of an impaired root system and include general stunting with reduced terminal growth and small, chlorotic leaves.  Symptom expression depends on the amount of infected crown or root tissue and their rate of destruction.  Young trees are usually killed by the pathogen since their root systems and crown regions are not as developed as those of mature trees.  Generally, crown rots advance rapidly and trees fall and die soon after the first warm spring.  Their leaves wilt, dry, and remain attached to the tree (Adaskaveg et al., 2009; Gubler & Teviotdale, 2009).  Trees with root rot slowly decline and eventually die over several seasons. At early stages of tree decline, removing the bark reveals orange to reddish brown necrotic lesions in cambium tissue.  A thin, dark delineated margin is evident at the junction of healthy tissue and the expanding lesion which, over time, turns dark brown as it gets colonized by secondary fungi and bacteria.  Symptoms can extend through the root system resulting in a lack of fibrous and feeder roots.  Crown lesions can extend to the primary roots and up to the graft union, while collar lesions can extend up to a meter up from the graft union.  On dissection, collar infections may appear striped in the inner phloem tissue and, sometimes, result in weeping though cracked barked tissue (Cox, 2014).   Phytophthora cactorum also causes fruit rot in apple and pear, producing pale olive and dark brown lesions in apple and pear respectively.  Those lesions are diffusely marbled or uniformly colored with softly delineated margins (Covey et al., 2014).

In Rhododendrons affected by Phytophthora root rot, roots become necrotic and leaves turn chlorotic, wilt, roll downwards parallel to the midrib, and eventually turn brown.  In contrast, leaves of infected azalea become chlorotic, and then necrotic, but seldom wilt. Necrotic leaves eventually drop to the ground (Hoitink et al., 2014).

Infected trees may develop cankers on the stem or near the soil line with discoloration of infected bark, sometimes extending into the internal tissues (CABI, 2017).

Phytophthora cactorum can cause crown rot and root rot of strawberries.  Initial symptoms typically include plant stunting and small leaves.  Later, infected plants may collapse rapidly or gradually.  When cut open, brown discoloration of the crown vascular tissue or entire tissue is apparent.  While other Phytophthora species may be involved, P. cactorum is the most common species on strawberry (Koike et al., 2008).  Fruit is also infected by P. cactorum resulting in leather rot disease.  On green fruit, symptoms appear as dark brown areas or green areas with brown margins.  As the rot spreads, the entire fruit turns brown with a rough texture that appears leathery. Infected mature fruit may be slightly discolored or turn brown to dark purple.  Internally, vascular tissue to each seed is darkened, and in later stages of decay mature fruit becomes leathery.  Infected fruit have unpleasant odor and taste.  Under moist conditions, white mycelial growth may be present on the surface of fruit.  Green and mature fruit eventually become shriveled mummies (Ellis & Madden, 1998).

Disease development: P. cactorum can survive for several years, mainly as oospores (sexual spores) in soil and mummified fruit. The pathogen can also survive as chlamydospores (thick-walled asexual spores) (Erwin & Ribeiro, 1996) in orchard soil or mycelium in host tissue (Cox, 2014).  Similar to other Phytophthora spp., P. cactorum lives as a saprophyte in litter and in soil containing dead organic material and is favored by moist and moderate climates. In spring, and in saturated soil, oospores germinate to produce sporangia.  In free water, zoospores are produced within sporangia and liberated into water.  While oospores and chlamydospores form the primary inoculum, sporangia are the principal source of secondary inoculum (CABI, 2017).  Free water is required for infection, however, a high incidence of disease can occur with as little as 2 hours or less of wetness at 17-25°C.  Optimum temperature for infection is 21°C.   The most favorable temperatures for sporangia production are between 15 and 25°C, and optimally at 20°C.  No sporangia are produced at 10 and 30°C (Ellis & Madden, 1998).   Sporangia can germinate directly or indirectly by producing zoospores.  Zoospores allow a population to increase rapidly and disperse widely in films of free water.  Zoospores are expelled from sporangia under suitable temperature and moisture conditions and swim by means of their flagella towards their host in response to root exudates.  Once a zoospore comes in contact with a root it germinates producing a germ tube which penetrates the root directly under waterlogged soil conditions.   More mycelium develops and eventually, oospores (sexual spores) are produced and serve as resting structures that can survive for several years.  (CABI, 2017).

Transmission: Like most Phytophthora species, P. cactorum is soil-borne and water-borne and may be spread to non-infected sites through infected plants, nursery and planting stock, and seedlings, soil, run-off and splash irrigation and rain water, and contaminated cultivation equipment, tools, and boots.  Under high moisture and windy conditions, sporangia may be airborne and important in spread of diseases such as leather rot of strawberry.  The pathogen is not seed-borne but can be spread by infected seedlings and through soil or plant debris containing oospores or chlamydospores contaminating seed samples (CABI, 2017).  Furthermore, irrigation water from canals, rivers, and ponds can be contaminated with Phytophthora spp. (Brown & Mircetich, 1995).

Damage Potential: Specific crop losses caused by Phytophthora cactorum alone may be difficult to assess as more than one species of Phytophthora may cause diseases with symptoms similar to those caused by P. cactorum and may be present in infected hosts. Nevertheless, P. cactorum is a serious pathogen of a wide range of plant species. Infections of 88-97% apple and pear nursery stock material in commercial nurseries has been reported (Jeffers & Aldwinckle, 1988), and P. cactorum has been frequently detected in several ornamental nurseries within California (Yakabe et al., 2009).  Therefore, nurseries may be at risk and need to be monitored for this pathogen to ensure production and planting of disease-free nursery stock.

California’s native vegetation is also at risk of root and crown rot caused by P. cactorum and other Phytophthora spp., many of which are endemic (limited) to California, while some are rare, endangered, or threatened plants, e.g., Ribes spp. (currant/gooseberry), Monterey cypress, and Arctostaphylos spp. (manzanita) (Calflora, 2017; CNPS, 2017).  Introduction of Phytophthora species are a threat to plant health in Bay Area restoration sites, where nursery stock is planted for flood control or to mitigate environmental impacts.   Detections on madrone, toyon, oaks, sticky monkeyflower, and manzanitas in native stands indicate that P. cactorum is capable of becoming established in a variety of native plant habitats under a range of soil and environmental conditions and can have negative impacts on native vegetation.

Worldwide Distribution: Asia: China, India, Indonesia, Iran, Israel, Japan, Korea DPR, Republic of Korea, Laos, Lebanon, Malaysia, Pakistan, Philippines, Taiwan, Turkey, Vietnam; Africa: Egypt, Kenya, Morocco, Senegal, South Africa, Tunisia, Zimbabwe; North America: Bermuda, Canada, Mexico, USA; South America: Argentina, Brazil, Chile, Colombia, Peru, Uruguay, Venezuela; Europe: Austria, Belgium, Bulgaria, Croatia, Czech Republic, (former) Czechoslovakia, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Netherlands, Norway, Poland, Romania, Russian Federation, Russia (European), Serbia, Slovenia, Spain, Sweden, Switzerland, United Kingdom; Oceania: Australia, New Zealand; Central America and Caribbean: Cuba, El Salvador, Trinidad and Tobago (CABI, 2017; EPPO, 2017).

In the USA, Phytophthora cactorum has been reported from California, Florida, Maine, Michigan, Minnesota, New York, North Carolina, Ohio, South Carolina, Tennessee, Virginia, Washington (CABI, 2017; EPPO, 2017).

Official Control:  Presently, Phytophthora cactorum is the “Harmful Organism Lists” for Egypt, French Polynesia, Guatemala, India, Israel, Lebanon, and Nicaragua, while, Phytophthora spp. is on the “Harmful Organism Lists” for Canada, French Polynesia, Mexico, Namibia, Seychelles, South Africa, and the Bolivarian Republic of Venezuela (USDA PCIT, 2017).

California Distribution: Phytophthora cactorum is widely distributed within California.  From 2001-July, 2017, the pathogen was detected in Alameda, Butte, Contra Costa, Imperial, Los Angeles, Marin, Merced, Monterey, Placer, Sacramento, San Diego, San Francisco, San Mateo, Santa Barbara, Santa Clara, Santa Cruz, Siskiyou, Solano, Sonoma, and Stanislaus Counties (CDFA Pest Damage Records).

California Interceptions:  None reported.

The risk Phytophthora cactorum would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Phytophthora cactorum has already established a large distribution under moist and cool to warm climates in California.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: The pathogen has a very wide host range.

Evaluate the host range of the pest.

Score: 3

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

High (3) has a wide host range.

3) Pest Dispersal Potential: Phytophthora cactorum, like other Phytophthora, has high reproductive capability under moist conditions.  It is dependent on moisture for spore dissemination and plant infection.  It is soilborne and may be spread to non-infected sites through infected plants, nursery and planting stock, and seedlings, soil, run-off and splash irrigation and rain water, and contaminated cultivation equipment, tools, boots, rivers, canals, and ponds.  Therefore, it is given a high rating in this category.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential. 

4) Economic Impact: Damage caused by Phytophthora cactorum alone may be difficult to assess as more than one species of Phytophthora may be associated with root and crown rot of host tree.  Nevertheless, cactorum is a serious pathogen affecting production of several economically important hosts including, apple, pear, stone fruits, strawberry, ornamentals, and California native plants.  Nursery productions could be at risk. Controlling the disease would include soil water management and use of resistant varieties, thereby requiring changes in cultural practices and increase in crop production costs.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, D, G

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: In conjunction with other Phytophthora, P cactorum may be a contributor to root and crown disease of environmental plants. California’s native vegetation is at risk of root and crown rot damage caused by P. cactorum and other Phytophthora spp.  Certain native plants are endemic (limited) to the State, while some are rare, endangered, or threatened.  The pathogen is capable of becoming established in a variety of native plant habitats under a range of soil and environmental conditions and can have negative impacts on native vegetation.  Its association alone and with other Phytophthora spp. in infected forest and native tree and shrub hosts could result in lowered biodiversity, disrupted natural communities, and critical habitats.  Also, it may significantly impact ornamental plantings and home/urban gardening.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: A, B, C, E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Phytophthora cactorum:

Add up the total score and include it here. 14

-Low = 5-8 points

-Medium = 9-12 points

                        –High = 13-15 points

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Evaluation is:

Score: (-3)

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

 Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 11

Uncertainty:  

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Phytophthora cactorum is B.


References:

Adaskaveg, J. E., J. L. Caprile, W. D. Gubler, B. L. Teviotdale.  2009.  Cherry: Phytophthora root and crown rot, pathogen: Phytophthora spp.  UCIPM Statewide Integrated Pest Management Program, University of California Agriculture & Natural Resources.  http://ipm.ucanr.edu/PMG/r105100711.html

Browne, G. T., and S. M. Mircetich.  1995.  Phytophthora root and crown rots.  In Compendium of Stone Fruit Diseases, Eds: J. M. Ogawa, E. I. Zehr, G. W. Bird, D. F. Ritchie, K. Uriu, and J. K. Uyemoto.  APS Press, The American Phytopathological Society. Pages 38-40.

CABI.  2017.  Phytophthora cactorum (apple collar rot) full datasheet.  Crop Protection Compendium. http://www.cabi.org/cpc/datasheet/40953

Calflora.  2017.  Information on California plants for education, research and conservation. [Web application]. 2017. Berkeley, California. The Calflora Database [a non-profit organization].  http://www.calflora.org/

CNPS.  2017.  Inventory of rare and endangered plants of California (online edition, v8-03 0.38).  California Native Plant Society, Rare Plant Program. Website http://www.rareplants.cnps.org [accessed 10 August 2017].

Covey, R. P. Jr., and D. C. Harris; revised by K. Cox.  2014.  Phytophthora fruit rot.  In Compendium of Apple and Pear Diseases and Pests Second Edition Eds. T. B. Sutton, H. S. Aldwinckle, A. M. Agnello, J. F. Walgenbach.  APS Press, The American Phytopathological Society.  Pages 41-42.

Cox, K.  2014.  Phytophthora collar, crown, and root rots.  In Compendium of Apple and Pear Disease and Pests Second Edition Eds: T. B. Sutton, H. S. Aldwinckle, A. M. Agnello, J. F. Walgenbach.  Pages 63-65.

EPPO.   2017.   Phytophthora cactorum (PHYTCC).  PQR database.  Paris, France: European and Mediterranean Plant Protection Organization.  https://gd.eppo.int/

Ellis, M. A., and L. V. Madden.  1998.  Leather rot.  In Compendium of Strawberry Diseases Second Edition Ed. J. L. Maas.  APS Press, The American Phytopathological Society.  Pages 33-35.

Erwin, D. C., and O. K. Ribeiro.  1996.  Phytophthora Diseases Worldwide. St Paul, Minnesota, USA: American Phytopathological Society Press.

Farr, D. F., and A. Y. Rossman.  2017.  Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Retrieved July 31, 2017, from https://nt.ars-grin.gov/fungaldatabases/

French, A.M. 1989. California Plant Disease Host Index. California Department of Food and Agriculture, Sacramento (Updated online version by T. Tidwell, May 2, 2017).

Gubler, W. D., and B. L. Teviotdale.  2009.  Apple, Phytophthora root and crown rot (updated 3/2009).  UCIPM, University of California Agriculture & Natural Resources, Statewide Integrated Pest Management Program.  http://ipm.ucanr.edu/PMG/r4100511.html

Hoitink, D. M. Benson, and A. F. Schmitthenner; revised by D. M. Benson and S. N. Jeffers.  2014.  Phytophthora root rot.  In Compendium of Rhododendron and Azalea Diseases and Pests Second Edition Eds: R. G. Linderman and D. M. Benson.  Pages 5-10.

Jeffers, S. N., and H. S. Aldwinckle.  1988.  Phytophthora crown rot of apple trees: sources of Phytophthora cactorum and P. cambivora as primary inoculum. Phytopathology, 78: 328-335

Mircetich, S. M., and M. E. Matherton.  1976.  Phytophthora root and crown rot of cherry trees.   Phytopathology 66: 549-558.

USDA PCIT.  2017.  USDA Phytosanitary Certificate Issuance & Tracking System. Retrieved June 6, 2017. 11:48:29 am CDT.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.

Yakabe, L. E., C. L. Blomquist, S. L. Thomas, and J. D. MacDonald.  2009.  Identification and frequency of Phytophthora species associated with foliar diseases in California ornamental nurseries.  Plant Disease, 93: 883-890.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


 PEST RATING: B


Posted by ls