Category Archives: Ratings

Soybean Looper | Chrysodeixis includens (Walker)

California Pest Rating Proposal for
Chrysodeixis includens (Walker): soybean looper
Lepidoptera: Noctuidae
Current Pest Rating:  Q
Proposed Pest Rating: A

Comment Period: 10/19/18 – 12/03/18


Initiating Event:

Chrysodeixis includens (Walker) is reported as a key pest of soybean in parts of North and South America, and all Central America. It is often confused with the cabbage looper [(Trichoplusia ni (Hubner)] which is similar in size and appearance. It was recently intercepted on a shipment of cut foliage from Florida. This species has a temporary Q rating. A pest rating proposal is required to assign a permanent rating.

Synonyms:

Pseudopulsia includens (Goater et.al. 2003)

History & Status:

Background Chrysodeixis includens is primarily a foliage feeder but it also feeds on pods or fruits (Carter et.al. 2017). The most destructive stage of this pest is the larval or caterpillar stage. Caterpillars are light green in color with white lines running along their body length (Grains SA, 2017). Larger larvae feed on entire plants, can completely defoliate plants; their damage continues by feeding on soybean pods later. Adult moths feed solely on flower nectar. Although it’s a major pest of soybean, C. includens feeds on many other agronomic, vegetable and floricultural crops. (Carter et.al., 2017)

The soybean looper attacks the lower canopy after hatching. Feeding generally starts from inside the canopy and moves up and outward. This feeding pattern can be easily overlooked when scouting for pests as the outer canopy appear undamaged. Most foliage is consumed by later instars during the last 4-5 days of the larval stage.

Worldwide Distribution:

Chrysodeixis includens is widely distributed throughout North America. In addition, it is present in Central America, the Caribbean, South America and Oceania and the Unites States (CABI, 2018).

Chrysodeixis includens occurs throughout the United States. However, the worst infestations of this pest on soybean occur in Texas, Arkansas, Mississippi, Alabama, Georgia, and South Carolina (Herzog, 1980).

Official Control: Chrysodeixis includens has been listed as a harmful organism in Guatemala, India, Japan, Panama and Philippines (PCIT, 2018).

California DistributionChrysodeixis includens has never been found in the natural environment of California.

California InterceptionsChrysodeixis includens has been intercepted by CDFA through border stations inspections, state exterior quarantine and high risk pest exclusion activities (CDFA Pest and Damage Report Database, 2018)

The risk Chrysodeixis includens (soybean looper) would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Chrysodeixis includens is active throughout the winter in tropical areas of the New World. It overwinters in sub-tropical regions of North and South America. In the United States, it overwinters in south Florida and south Texas. Host plants at the time of flowering or fruiting, are most attractive to ovipositing adults (CABI, 2018). Broad climatic tolerances of this species and the presence of many potential host plants throughout California suggests that includens could become established much over California. It receives a High (3) in this category.

Evaluate if the pest would have suitable hosts and climate to establish in California:

Score: 3

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Chrysodeixis includens has been recorded on 174 host plants across 39 plant families; with most hosts belonging to the families Asteraceae Solanaceae, Fabaceae, Lamiaceae, Brassicaceae, Poaceae, Amaranthaceae, Euphorbiaceae, and Malvaceae (Specht, 2015). It is considered a major pest of soybean but also attacks cotton, sunflower, lettuce, cabbage, broccoli, sweet potato, cucumber, common bean, pea, sugarcane, sorghum, maize, wheat and tomato. Besides the large number of cultivated crop species, includens also feeds on weeds and native plants. It receives a High (3) in this category.

Evaluate the host range of the pest:

Score: 3

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Chrysodeixis includens undergoes complete metamorphosis (egg, larva, pupa and adult life stages). Adult female deposits eggs on undersides of soybean leaves. It lays approximately 640 eggs over her life span. Eggs hatch in 3 days and go through 6 larval stages in about 14 days. The life cycle is completed in 27 days (Soybean Insect Guide, 2011). Dispersal can occur through flight of adult moths and migrant populations from areas where it overwinters. It receives a Medium (2) in this category

Evaluate the natural and artificial dispersal potential of the pest:

Score: 2

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Chrysodeixis includens is mainly a foliage feeder but also feeds on pods or fruits. On soybean, it feeds from the lower, interior canopy, moving up and outward. Most foliage is consumed by later instars during the last 4-5 days of the larval stage (Smith, 1994). This species is reported to cause economic damage on table legumes, floriculture crops, sweet corn ears, yam and passion flower (Spelch et.al, 2015). All these crops are cultivated in California. More than 90% damaged tomato crop has been reported during heavy infestations in Puerto Rico (Plant Wise Knowledge Bank, 2018). This species has been shown to develop resistance to commonly-used insecticides. It receives a High (3) in this category.

Evaluate the economic impact of the pest to California using the criteria below:

Economic Impact: A, B, C, D

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: Chrysodeixis includens is not likely to lower biodiversity and disrupt natural communities. It is also not likely to impact major endangered and threatened species in California. If this species gets introduced from southern states to California, it would trigger private treatments in garden plantings.  It receives a Medium (2) in this category.

Evaluate the environmental impact of the pest on California using the criteria below:

Environmental Impact:  D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact:

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Chrysodeixis includes (soybean looper): High (13)

Add up the total score and include it here:

-Low = 5-8 points

-Medium = 9-12 points

                        –High = 13-15 points

6) Post Entry Distribution and Survey Information: Chrysodeixis includens (soybean looper) has never been found in the environment in California and receives a Not established (0) in this category.

Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included:

Score: 0

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (13).

Uncertainty:

Chrysodeixis includens has been intercepted over the years by CDFA however it has not been able to spread and get established. Since it overwinters in south Florida and south Texas, the possibility of its introduction as a migrant moth cannot be underestimated, however there are not many well documented studies of its life history. The wide range of host availability in California can likely serve as source for its establishment once it gets introduced. Since soybean is not cultivated in large areas of the California, the economic impacts would be likely concentrated to tomato and other widely grown host plants.

Conclusion and Rating Justification:

Chrysodeixis includens has not been reported in California. If this species gets introduced and established in the state, it may likely have significant economic and environmental impacts, mainly due to the wide range of plants it attacks , being cultivated in California.  An “A”-rating is justified.


References:

CABI 2018. Crop Protection Compendium. Datasheet: Chrysodeixis includens (soybean looper). Accessed 6/25/2018:  https://www.cabi.org/cpc/datasheet/13245

Carter, E and Gillett-Kaufman, J.L. 2017. Featured Creatures: Soybean Looper Chrysodeixis includens (Walker). Entomology and Nematology Department, University of Florida. Accessed 6/25/2018. http://entnemdept.ufl.edu/creatures/field/soybean_looper.htm

Goater, B., Ronkay, L. and Fibiger, M., 2003. Noctuidae Europaeae. Catocalinae, Plusiinae,vol. 10. Entomological Press, Sorø

Grain SA, 2017. Pseudoplusia includens (Walker): Soybean Looper.  Association of Grain farmers in South Africa. Accessed 6/26/2018 http://www.grainsa.co.za/pages/grain-research/crop-protection/economically-important-pest-and-diseases/soybean-looper

Herzog D.C. 1980. Sampling soybean looper on soybean. pp. 141-168. In Kogan M, Herzog DC (Eds.) Sampling Methods in Soybean Entomology. Springer, New York, USA. Assessed 6/26/2018 https://link.springer.com/chapter/10.1007/978-1-4612-9998-1_7

Pest and Damage Record Database. Pest Prevention and Plant Health Services. California Department of Food and Agriculture. Accessed 6/25/2018: http://phpps.cdfa.ca.gov/user/frmLogon2.asp

CABI Plantwise, 2018. Plantwise Knowledge Bank. Plantwise Technical Factsheet. Soybean looper (Chrysodeixis includens). Accessed 6/27/2018:
https://www.plantwise.org/KnowledgeBank/Datasheet.aspx?dsID=13245

Soybean Insects Guide, 2011. Soybean looper: Biology and Ecology. Department of Entomology. Iowa State University. Accessed 6/27/2018: https://www.ent.iastate.edu/soybeaninsects/node/338

Smith R.H., Freeman B and Foshee W. 1994. Soybean loopers: Late season foliage feeders on cotton. Alabama Extension. Circular ANR-843.

Specht A, de Paula-Moraes S.V. and Sosa-Gomez, D.R. 2015. Host plants of Chrysodeixis includens (Walker) (Lepidoptera, Noctuidae, Plusiinae). Revista Brasileira de Entomologia 59: 343-345.

USDA Phytosanitary Certificate Issuance & Tracking System (PCIT) Phytosanitary Export Database (PExD). Accessed 6/25/2018. https://pcit.aphis.usda.gov/PExD/faces/PExDReport.jsp


Author:

Raj Randhawa, 1220 ‘N’ Street, Room 221, Sacramento CA 95814, (916) 403-6617, plant. health[@]cdfa.ca.gov.

Responsible Party:

Kyle Beucke, 1220 ‘N’ Street, Room 221, Sacramento CA 95814, (916) 654-1211, plant.health[@] cdfa.ca.gov.


Comment Period:*

10/19/18 – 12/03/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Proposed Pest Rating: A


Posted by ls 

Volutaria tubuliflora (Murb.) Sennen

California Pest Rating Proposal for
Volutaria tubuliflora (Murb.) Sennen
Family: Asteraceae
Desert knapweed
Current Rating:  Q
Proposed Rating: A | Proposed Seed Rating: R

 


Comment Period: 9/25/18 – 11/9/18


Initiating Event:

This plant has been rated as “Q” on the CDFA Plant Pest Rating list for 2 years. 

History & Status:

The genus Volutaria comprises plants in the thistle tribe (Cardueae) of the daisy family (Asteracaeae). Many of the 17 species in this genus were originally described in the genus Centaurea, the genus that includes star-thistles, knapweeds, and bachelor’s buttons; the two genera are closely related. Volutaria differs from Centaurea in lacking a terminal spine shield on the tips of the inflorescence bracts and in having flowers subtended by scales rather than bristles. Desert knapweed is a pink-flowered (sometimes white-flowered in Southeastern Morocco), annual or short-lived perennial species. It was collected from a naturalized population near Anza Borrego in San Diego County, California. At this spot, it was tentatively identified as Canary Island knapweed (Volutaria canariensis), a closely related species endemic to the Canary Islands.  Desert knapweed seems to be spreading steadily in the Anza Borrego Area. Another species, Volutaria muricata, was introduced to limited localities in three counties in Southern California along the coast.  We have no current information on its range and persistence. However, several species within the Centaurea group are known noxious weeds in California, including purple starthistle (Centaurea calcitrapa), diffuse knapweed (Centaurea diffusa), Iberian starthistle (Centaurea iberica), spotted knapweed (Centaurea stoebe), Malta starthistle (Centaurea melitensis), meadow knapweed (Centaurea jacea s.l.), yellow starthistle (Centaurea solstitialis), and squarrose knapweed (Centaurea squarrosa).

Desert knapweed has the largest native range of any species of Volutaria. It is widespread across northern Africa, as well as in other areas of the Region, where it inhabits drier localities and desert transition zones. Its expansion into some of these areas may be recent. It prefers nitrogen enriched soils and therefore has proven to spread rapidly along roadsides, as well as in dry farming areas and irrigated fields.

The San Diego County Agricultural Commissioner’s office initiated control measures against this plant. They are part of a coordinated effort to eradicate this plant from North America by County, State, and city staff, as well as by the non-profit organization CalIPC and private volunteers.

Worldwide Distribution:  Desert knapweed occurs throughout North Africa from Morocco to Egypt, in southern Europe (Spain, Sicily, and Turkey), the Canary Islands, and in Arabia. There is a recent report of it being detected in Chile.  In North America the only known populations of Desert knapweed are in southern California.

Official Control:  Desert knapweed is currently listed on the California noxious weed list (under the name Volutaria canariensis; Canary Island knapweed).   Desert knapweed has been recently (8/2018) as a Category A noxious weed in the state of Nevada.

California Interceptions: Desert knapweed was found after it had established along a road in the Anza Borrego Desert in 2009 (San Diego County). A new detection of a small colony along Newport Bay in Orange County was reported in 2015 and the Chula Vista plants in 2016 (San Diego County).

Consequences of Introduction: 

1) Climate/Host Interaction: Evaluate if the pest would have suitable hosts and climate to establish in California.

Risk is High (3), as the plant is naturalized on roadsides in the desert, where it is spreading rapidly. Two more recent finds in Orange and San Diego counties indicate that it may invade southern coastal areas in California as well.

Score: 3

-Low (1) Not likely to establish in California; or likely to establish in very limited areas.

-Medium (2) may be able to establish in a larger but limited part of California.

-High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Evaluate the host range of the pest.

Risk is high (3) as weeds do not require any one host, but grow wherever ecological conditions are favorable.

Score: 3

-Low (1) has a very limited host range.

-Medium (2) has a moderate host range.

-High (3) has a wide host range.

3) Pest Dispersal Potential: Evaluate the natural and artificial dispersal potential of the pest.

Risk is Medium (2). The plant produces a moderate number of seeds that spread along roads, although large plants may produce thousands of seeds. Its appearance via some unknown pathway in such a remote area attests to its ability to spread under the right circumstances. During the 5 years that it has been detected, it has slowly increased its range in the Anza Borrego Desert. It was in Newport Bay since at least 1987, where it is currently known from seven spots. The seed lasts at least 3 years in the seed bank.

Score: 2

-Low (1) does not have high reproductive or dispersal potential.

-Medium (2) has either high reproductive or dispersal potential.

-High (3) has both high reproduction and dispersal potential.

4) Economic Impact Score: Evaluate the economic impact of the pest to California using the criteria below.

The presence of this plant in the Anza Borrego desert may in the future impact the spring wildflower tourist industry if the plant behaves like another noxious desert weed, Sahara mustard (Brassica tournefortii). If it infests row crops or irrigated areas, it could lower crop value or crop yield.

Score: 3 (A, B, C)

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

-Low (1) causes 0 or 1 of these impacts.

-Medium (2) causes 2 of these impacts.

-High (3) causes 3 or more of these impacts.

5) Environmental Impact Score: Evaluate the environmental impact of the pest on California using the criteria below.

Risk is high (3) as the plant might be able to dominate desert and dry coastal areas that are home to sensitive species such as desert tortoise, blunt-nosed leopard lizard, and many rare native plants.

Score: 3 (A, C, D)

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest could significantly impact cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score: 3

Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Desert knapweed: High (14)

Add up the total score and include it here.

Low = 5-8 points

Medium = 9-12 points

High = 13-15 points

6) Post Entry Distribution and Survey Information:  Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Desert knapweed has been found in three counties in California. Its range at this time is limited. It receives a Low (-1) in this category.

Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (13)

Uncertainty:

Given that the weed history of Desert knapweed is just being deciphered, it is difficult to assess potential risk. Nevertheless, given its rapid spread in Anza Borrego it seems likely to be a major invasive. Given its long distance dispersal, its noxious relatives, and the effects of other introduced annuals such as Sahara mustard on desert ecosystems, it seems best to attempt eradication of the currently small populations.

Conclusion and Rating Justification:

Although Desert knapweed may be limited in its spread by its environmental tolerance, it may nevertheless become a severe pest within the desert and along the southern California coast in disturbed areas. This is based on its ecology in the Old World. As the species currently is highly restricted in its range in North America and eradication may be possible, we recommend that Desert knapweed be rated as A.


References:

Calleja, J. A., Garcia-Jacas, N., Roquet, C., & Susanna de la Serna, A. 2016. Beyond the Rand Flora pattern: Phylogeny and biogeographical history of Volutaria (Compositae). Taxon 65: 315-332.

Consortium of California Herbaria. Accessed 1/31/2017: http://ucjeps.berkeley.edu/consortium/

Devesa, J. A. & Martinez, J. L. 2014. Volutaria Cass. In Devesa, J.A., Quintanar, A. & Garcia, M. A. (eds.). Flora iberica XVI: 272-278. Real Jardín Botánico, CSIC, Madrid.

Teillier, S., Macaya, J., Sisanna, A. & Calleja, J. A. 2014. Volutaria tubuliflora (Murb.) Sennen (Asteraceae), nueva especie alóctona asilvestrada para Chile. Gayana Bot. 71: 276-279.

Wagenitz, G. 1991. Volutaria canariensis Wagenitz, Candollea 46: 408.

Volutaria, a new invasive knapweed. Accessed 1/28/2017:

http://tchester.org/bd/species/asteraceae/volutaria_canariensis.html


Responsible Party:

Dean G. Kelch, Primary Botanist; California Department of Food and Agriculture; 1220 N Street, Sacramento, CA 95814; Tel. (916) 403-6650;  plant.health[@]cdfa.ca.gov.


Comment Period:

9/25/18 – 11/9/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Posted by ls

 

Leek Moth | Acrolepiopsis assectella (Zeller)

California Pest Rating Proposal for 
Leek Moth | Acrolepiopsis assectella (Zeller)
Lepidoptera: Acrolepiidae
Current Pest Rating:  Q
Proposed Pest Rating: A

 


Comment Period: 9/24/18 – 11/8/18


Initiating Event:

On July 3, 2018 USDA released a New Pest Advisory Group (NPAG) report proposing to change the status of Acrolepiopsis assectella (leek moth) to non-actionable within the continental United States.  A pest rating proposal is required to determine future direction.

History & Status:

Background:  Leek moth is a leaf-mining moth that feeds on plants in the genus Allium1. Preferred hosts of the moth are garlic, leek, and onion1. Over-wintering adults become active when temperatures reach 15ºC1.  Female moths lay eggs on leaves which larvae mine1.  Mature larvae emerge from the leaf tissue and pupate on the external surface of the plant1.  When adults emerge they either begin another generation or overwinter1, depending on the time of year.  Leek moth can rapidly spread long distances when infested plant material is moved.

Worldwide Distribution: Leek moth is presumably native to Eurasia. It was first found in North America in Ontario in 19931.  Leek moth was first detected in the United States in New York in 2009 and has since spread to New Hampshire, Maine, and Vermont1.

Official Control: Leek moth is listed as a harmful organism by Chile, Colombia, Costa Rica, Ecuador, French Polynesia, Honduras, Israel, Japan, the Republic of Korea, Mexico, New Caledonia, Nicaragua, Peru, and Taiwan3.

California Distribution:  Leek moth has not been found in the environment of California.

California Interceptions:  Leek moth has never been intercepted in California.

The risk Acrolepiopsis assectella (leek moth) would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Leek moth is expected to be able to establish a widespread distribution in California wherever Allium plants grow. Based on its current widespread distribution in Europe and northern Africa it is not expected to be limited by climate in California.  It receives a High (3) in this category.

Evaluate if the pest would have suitable hosts and climate to establish in California.  Score:

Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Leek moth is only known to feed on plants in the genus Allium.  It receives a Low (1) in this category.

Evaluate the host range of the pest. Score:

Low (1) has a very limited host range.

Medium (2) has a moderate host range.

High (3) has a wide host range.

3) Pest Dispersal Potential: Leek moth has a high reproductive rate with each female laying an average of 100 eggs and the population completing as many as 8 generations per year1, depending on climate.  The moth can rapidly spread long distances when eggs, larvae, or pupae on plants or harvested plant parts are moved.  Adults can also fly.  Leek moth receives a High (3) in this category.

Evaluate the natural and artificial dispersal potential of the pest. Score:

Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: California is the largest producing state in the U.S. of garlic, onions, and green onions.  The state produces 90%+ of the commercial garlic, is the largest producer of processing onions, and is one of the top fresh market onion producers in the nation2.  Both garlic and onion crops are valued at $150-$300 million each annually2.  California also leads the nation in the production of green onions with a 2009 crop value of $28 million in Monterey and Riverside county alone4.  If leek moth were to establish in California it is expected to lower crop yields and increase production costs of these crops, especially on organic farms.  Leek moth causes damage of economic importance in Allium  Yield reductions can be as high as 50 percent and have the potential to reach 100 percent for organic growers who do not implement sufficient control measures1.  Its presence in the state would likely affect markets for fresh garlic and onions.  Growers in other places infested with leek moth have changed cultural practices including crop row netting, crop rotation, delayed planting, removal of old and infested leaves, destruction of pupae or larvae, early harvesting, avoidance of planting crops near known infestations, and destruction of plant debris following harvesting1.  The moth is not expected to vector other organisms, injure animals, or interfere with water supplies.  Leek moth receives a High (3) in this category.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C, D

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: If leek moth were to establish in California it is not expected to lower biodiversity, disrupt natural communities, or change ecosystem processes.  It is likely to affect threatened and endangered species such as Munz’s onion (Allium munzii) and Yosemite onion (Allium yosemitense).  Leek moth would not be expected to disrupt critical habitats.  It is likely to trigger additional treatment programs in agriculture and in residential gardens.  Species of Allium are grown in home/urban gardens and would be significantly affected by this pest.  Leek moth receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Economic Impact: B, D, E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact.

Environmental Impact Score: 3

Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Acrolepiopsis assectella (leek moth):  High (13)

Add up the total score and include it here.

Low = 5-8 points

Medium = 9-12 points

High = 13-15 points

6) Post Entry Distribution and Survey Information: Leek moth has never been found in California and receives a Not established (0) in this category.

Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (13)

Uncertainty:

Leek moth causes significant damage to plants in the genus Allium.  Its presence in California would rapidly come to the attention of garlic and onion growers, so there is little uncertainty regarding its absence from the state.  There is low uncertainty with this pest.

Conclusion and Rating Justification:

If leek moth were to become established in California it would have significant economic and environmental impacts.  An “A” rating is justified.


References:

1 USDA New Pest Advisory Group:  NPAG Report Acrolepiopsis assectella (Zeller): Leek moth.  June 29, 2018.

2 California Garlic & Onion Research Advisory Board.  http://www.cagarlicandonion.com/

3 USDA Phytosanitary Certificate Issuance & Tracking System (PCIT) Phytosanitary Export Database (PExD).  https://pcit.aphis.usda.gov/pcit/

4 Smith, Richard, Michael Cahn, Marita Cantwell, Steven Koike, Eric Natwick, and Etaferahu Takele. 2011.  Green Onion Production in California.  UC Vegetable Research & Information Center Vegetable Production Series.  http://anrcatalog.ucanr.edu/pdf/7243.pdf


Author:

Jason Leathers, 1220 ‘N’ Street, Sacramento CA 95814, (916) 654-0312, plant.health[@]cdfa.ca.gov

Responsible Party:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741, plant.health[@]cdfa.ca.gov


Comment Period:*

9/24/18 – 11/8/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Posted by ls

Cercospora insulana Sacc. 1915

California Pest Rating Proposal for
Cercospora insulana Sacc. 1915
Current Pest Rating:  C
Proposed Pest Rating: C

Comment Period: 9/13/18 – 10/28/18


Initiating Event: 

On May 11, 2018 a postal shipment of statice dried flowers showing symptoms of leaf spots was intercepted by the CDFA at a Federal Express (FedEx) office.  The shipment was destined to a private owner in Alameda County and had originated in Hawaii.  A sample of the symptomatic flowers was sent to the CDFA Plant Pathology Lab for disease diagnoses.  On May 17, 2018 Cheryl Blomquist, CDFA plant pathologist, identified the fungus, Cercospora insulana associated with the leaf spots.  The present status and rating of C. insulana is reevaluated here.

History & Status:

Background:  Cercospora insulana is a fungal plant pathogen in the Mycosphaerellaceae family, that causes leaf spot of statice and other host plants.

The pathogen is globally widespread.  In the USA, Cercospora insulana has only been reported from Florida and California (Farr & Rossman, 2018).  In California, prior to its most recent detection, the pathogen has been reported on Armeria sp. and Limonium spp. in northern and southern coastal region of California (French, 1989).

Disease cycle: In general, plants infected with Cercospora species produce conidiophores (specialized hypha) that arise from the plant surface in clusters through stomata and form conidia (asexual spores) successively.  Conidia are easily detached and blown by wind often over long distances.  On landing on surfaces of a plant host, conidia require water or heavy dew to germinate and penetrate the host.  Substomatal stroma (compact mycelial structure) may form from which conidiophores develop.  Development of the pathogen is favored by high temperatures and the disease is most destructive during summer months and warmer climates.  High relative humidity is necessary for conidial germination and plant infection.  The pathogen can overwinter in or on seed and as mycelium (stromata) in old infected leaves (Agrios, 2005).   

Dispersal and spread: Dispersal and spread: air-currents, infected nursery plants, infected leaves, seeds (Agrios, 2005).

Hosts: Armeria sp., A. maritima (thrift seapink), Limonium sp., L. bonducellii (Algerian statice), L. californicum (California sea lavender/marsh rosemary), L. gmelinii (syn. Statice gmelinii; Siberian statice), L. sinuatum (syn. Statice sinuata; statice/wavyleaf sea lavender), L. vulgare (common sea lavender) (CABI, 2018; French, 1989); Nerium indicum (Indian oleander) (XueWen et al., 2017)

Symptoms:  Leaf spot symptoms caused by Cercospora insulana in field-grown statice were reported from Italy as circular, brown lesions with a darker edge, 3-6 mm in diameter and surrounded by an orange or reddish halo.  Old lesions enlarged and coalesced, causing yellowing and senescence of leaves.  Heavy infections resulted in severe defoliation and retarded growth or death in panicles. Lesions were also present on the wings of the flower scapes, while scapes proper were not involved (Nicoletti et al., 2003).

Damage Potential: Quantitative losses due to Cercospora insulana have not been reported.  If left uncontrolled, leaf spotting may lead to disease outbreaks under favorable conditions, wherein photosynthetic areas can be reduced.  Heavy infections may result in severe defoliation, retarded plant growth and death of flowers in statice, and likely, in other ornamental host plants.  Nursery productions of ornamental hosts under controlled and conducive conditions for pathogen development would also be of concern in California.  However, damage potential due to this pathogen is likely to be similar to other Cercospora diseases which is usually low (Agrios, 2005).  Furthermore, fungicide applications and sanitary measures including the use of clean seed have been used to successfully control Cercospora diseases (Agrios, 2005).

Worldwide Distribution: Asia: China (XueWen et al., 2017), India, Myanmar; Africa: Kenya, Malta, South Africa, Zimbabwe; Europe: Caucasus, Italy, Portugal, Russia: North America: USA (California, Florida), Haiti; Oceania: Australia, New Zealand (Farr & Rossman, 2018)

Official Control: Presently, Cercospora insulana is on the ‘Harmful Organism’ list for Brazil, Colombia, Ecuador and Israel (USDA PCIT, 2018).

California Distribution:  Cercospora insulana is distributed in northern and southern coastal areas of the State (French, 1989).

California Interceptions To date, the recent detection of C. insulana (see ‘initiating event’) has been the only interception reported.

The risk Cercospora insulana would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Cercospora insulana has only been detected in northern and southern coastal regions in California. These limited regions provide adequate moisture that favor development of the pathogen in host plants like statice.

Evaluate if the pest would have suitable hosts and climate to establish in California.  Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: The known host range is limited to statice, thrift seapink and Indian oleander in the genera Limonium, Armeria and Neria.

Evaluate the host range of the pest. Score: 1

Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Cercospora insulana has high reproductive potential resulting in the successive production of conidia which primarily depend on air currents, infected plants and seed for dispersal and spread.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Quantitative losses due to Cercospora insulana have not been reported. However, for nurseries particularly, infected host plants with leaf spots could result in lowered value resulting in use of fungicidal treatments thereby increasing production costs, and loss of markets.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

– Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Home garden plantings of statice species may be impacted if the pathogen was to establish under favorable environmental conditions and in the absence of adequate disease control.  The pathogen has not been detected in oleander in California.

Evaluate the environmental impact of the pest on California using the criteria below.

Environment Impact: E 

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Cercospora insulana:

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 10

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Evaluation is ‘Medium’ in California.

Score: (-2)

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 8

Uncertainty:  

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Cercospora insulana is to continue as C.


References:

Agrios, G. N.  2005.  Plant Pathology (Fifth Edition).  Elsevier Academic Press, USA.  922 p.

Farr, D.F., & A. Y. Rossman.  2016.  Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA.  Retrieved May 18, 2018, from http://nt.ars-grin.gov/fungaldatabases/

French, A. M. 1989. California Plant Disease Host Index. California Department of Food and Agriculture, Sacramento (Updated online version by T. Tidwell, May 2, 2017).

Nicoletti, R., F. Raimo, C. Pasini, and F. D’Aquila.  2003.  Occurrence of Cercospora insulana on statice (Limonium sinuatum) in Italy.  Plant Pathology 52: 418.  DOI: 10.1046/j.1365-3059.2003.00840.x

USDA PCIT.  2018.  USDA Phytosanitary Certificate Issuance & Tracking System. Retrieved May 18, 2018. 12:45:06 pm CDT.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.

XueWen, X., Z. Qian and G. YingLan.  2017.  New records of Cercospora and Pseudocercospora in China.  Mycosystema 36: 1164-1167.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-738-6693, plant.health[@]cdfa.ca.gov.


Comment Period:*

9/13/18 – 10/28/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Posted by ls 

Citrus Viroid V

California Pest Rating Proposal for
Citrus viroid V
Current Pest Rating: Q         
Proposed Pest Rating: B

Comment Period:  9/13/18 – 10/28/18    


Initiating Event:  

The risk of infestation of Citrus viroid V (CVd-V) in California is evaluated and a permanent rating is herein proposed. 

History & Status:

Background: The origin of Citrus viroid V (CVd-V) is uncertain (Serra et al., 2008a).  In a study in Spain on the response of Citrus species and citrus-related genera to viroid infections, Serra and other researchers (2008a) originally detected CVd-V in Atalantia citroides, a citrus relative plant propagated on rough lemon rootstock and graft-inoculated with artificial mixtures of different viroids.  The viroid source was provided to them by a researcher at the University of California, Riverside and purified preparations were shown to be infectious in Etrog citron (Citrus medica), a classical indicator plant of citrus viroids.  Subsequently, CVd-V was considered a new species of the genus Apscaviroid in the family Pospiviroidae (Serra et al., 2008a).  Viroids are classified within two families: Pospiviroidae and Avsunviroidae.  Citrus are natural hosts of several viroid species that belong to the family Pospiviroidae.  Therefore, A. citroides was identified as an unusual viroid host since it was resistant to all previously known citrus viroids, yet capable of replicating CVd-V (Serra et al., 2008b).  Infectious assays conducted by Sierra et al. (2008) showed that CVd-V in Etrog citron exhibited mild symptoms, however, co-infections with either Citrus bent leaf viroid (CBLVd) or Citrus dwarfing viroid (CDVd, previously Citrus viroid III), also belonging to the genus Apscaviroid, showed synergistic effects in contrast to single infections of CVd-V or the other two viroids, however, titers of the viroids remained the same in singly or doubly infected plants (Serra et al., 2008a).

While the origin of CVd-V is not known, Pakistan may be one of the geographic origins of the viroid (Serra et al., 2008a, b; Parakh et al., 2017).  Serra et al. (2008a) suggested that the viroid was present, but overlooked or unnoticed, in field sources containing Hop stunt Viroid or Citrus dwarfing viroid – both of which have electrophoretic mobilities similar to CVd-V.  CVd-V has been found with some variations in its nucleotide sequence, in several countries in Africa, Asia, Europe, and North America (see ‘Worldwide Distribution).

In June 2016, the Citrus Clonal Protection Program-National Clean Plant Network (CCPP-NCPN), University of California, Riverside, California detected Citrus Viroid V in citrus budwood samples submitted by the CDFA for virus and viroid testing under the mandatory California (CA 3701) Citrus Nursery Stock Pest Cleanliness Program.  These budwood samples were taken from asymptomatic redblush grapefruit (Citrus paradisi) and variegated calamondin (C. madurensis) from a nursery in Tulare County.  This find marked the natural occurrence of CVd-V in California and corroborated the earlier report of CVd-VCA variant in the State (Dang et al., 2018; Serra et al., 2008b).

Hosts: Citrus spp.  including ‘Sanguinelli’, Salustiana’, and ‘Ricart navelina’ sweet oranges (Citrus x sinensis),  ‘Oroval’ and ‘Hernandina clementines (C. clementina), ‘Fino’ and ‘Verna’ lemons (C. limon), ‘Sevilano’ and ‘Cajel’ sour orange (C. aurantium), ‘Clausellina’ satsuma (C. unshiu), Temple mandarin (C. temple), Tahiti lime, Palestine sweet lime (C. limettioides), calamondin (C. madurensis), ‘Calabria’ bergamot (C. bergamia), ‘Orlando’ tangelo (C. paradisi x C. tangerina), ‘Page’ mandarin [(C. paradisi x C. tangerina) x C. clementina], and ‘Nagami’ kumquat (Fortunella margarita),  and Etrog citrus (Atlantia citroides) (Serra et al., 2008); ‘Shiranui’ [(C. unshiu x C. sinensis) x C. reticulata] (Ito and Ohta, 2010); ‘Moro blood’ sweet orange (Citrus x sinensis) (Bani Hashemian et al., 2013); redblush grapefruit (C. paradisi) (Dang et al., 2018).

Symptoms:   Citrus viroid V induced mild characteristic symptoms of very small necrotic lesions and cracks, sometimes filled with gum, in the stems of the viroid indicator plant, Etrog citron.  However, CVd-V reacted synergistically when Etrog citrus was co-infected with either citrus bent leaf viroid (CBLVd) or Citrus dwarfing viroid (CDVd), and showed severe stunting and epinasty with multiple lesions in the midvein.  Plants co-infected with CBLVd and CVd-V exhibited severe stem cracking characteristic of CBLVd, but without gum exudates, whereas plant co-infected with CDVd showed necrotic lesions (Serra et al., 2008a). Symptoms induced by CVd-V alone in commercial species and varieties are presently not known since commercial trees may be co-infected with several viroids (Ito and Ohta, 2010; Serra et al., 2008a).  Citrus viroid V may be present in asymptomatic citrus plant tissue – as recently evidenced by its detection in asymptomatic budwood collected from Tulare County, California.

Damage Potential:  The effect of CVd-V in commercial citrus rootstock-scion combinations, alone and in combination with other viroids, is yet unknown, however, Serra et al. (2008b) suggested that CVd-V could reduce tree size and yield as has been reported for clementine trees grafted on trifoliate orange co-infected with several viroids. Therefore, the need for nursery planting stock free of CVd-V is important.

Transmission:  Similar to other citrus viroids, CVd-V is graft-transmitted and is spread mainly through the propagation of infested material.

Worldwide Distribution:  Africa: Oman (Serra et al., 2008), Tunisia (Hamdi et al., 2015); Asia: China, Japan, Nepal, Pakistan (Cao et al., 2013), Iran (Bani Hashemian et al., 2010), Turkey (Önelge and Yurtmen, 2012); Europe: Spain (Serra et al., 2008); North America: USA (Serra et al., 2008).

Official Control: Citrus viroid V is a disease agent of concern that is tested for in the CDFA Citrus Nursery Stock Pest Cleanliness Program (3 CCR §§ 3701, et seq.).

California Distribution Tulare County (Dang et al., 2018).

California Interceptions: None reported.

The risk Citrus viroid V would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Citrus viroid V is likely to establish within infested propagative citrus materials in all citrus-growing regions of California.

Evaluate if the pest would have suitable hosts and climate to establish in California.

Score: 3

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Citrus viroid V has a moderate host range that is limited to several species and varieties of Citrus.

Evaluate the host range of the pest.

Score: 2

– Low (1) has a very limited host range.

Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Citrus viroid V replicates autonomously within infested plants and is spread mainly through the propagation and movement of infested planting materials to non-infested regions.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 2

– Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: The effect of CVd-V in commercial citrus rootstock-scion combinations, alone and in combination with other viroids, is yet unknown, however, it has been suggested by Serra et al. (2008b) that CVd-V could reduce tree size and yield.

Evaluate the economic impact of the pest to California using the criteria below.

Score: A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: It is probable that home, urban, public garden and landscape plantings of CVd-V-infested citrus plantings may be significantly impacted by the viroid singly or in combination with other viroids.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Citrus Viroid V

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction of CVd-V to California = 12.

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included. (Score)

-Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Evaluation is Low (-1)Currently, Citrus viroid V has only been detected in a nursery in Tulare County.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 11.                                                                             

Uncertainty: 

The effect of CVd-V in commercial citrus rootstock-scion combinations, alone and in combination with other viroids, is yet unknown.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Citrus viroid V is B.


References:

Bani Hashemian, SM, Taheri, H, Duran-Vila, N, and Serr, P.  2010.  First report of Citrus viroid V in Moro blood sweet orange in Iran.  Plant Disease 94: 129.

Cao, M. J., Liu, Y. Q., Wang, X. F., Yang, F. Y., and Zhou, C. Y.  2010.  First report of Citrus bark cracking viroid and Citrus viroid V infecting Citrus in China.  Plant Disease 94: 922. https://doi.org/10.1094/PDIS-94-7-0922C

Dang, T., Tan, S. H., Bodaghi, S., Greer, G., Lavagi, I., Osman, F., Ramirez, B., Kress, J., Goodson, T., Weber, K., Zhang, Y. P., Vidalakis, G.  First report of Citrus Viroid V naturally infecting grapefruit and calamondin trees in California.  Plant Disease, Posted online on August 10, 2018. https://doi.org/10.1094/PDIS-01-18-0100-PDN

Hamdi, I., Elleuch, A., Bessaies, N., Grubb, C. D., and Fakhfakh, H. 2015. First report of Citrus viroid V in North Africa. Journal of General Plant Pathology 81, 87

Ito, T., and Ohta, S.  2010.  First report of Citrus viroid V in Japan.  Journal of General Plant Pathology 76: 348-350.

Önelge, N., and Yurtmen, M. 2012. First report of Citrus viroid V in Turkey. Journal of Plant Patholology 94 (Suppl. 4), 88.

Parakh, D. B., Zhu, S., and Sano, T.  2017.  Geographical distribution of viroids in South, Southeast, and East Asia.  In: Apscaviroids Infecting Citrus Trees by Tessitori, M, Viroids and Satellites, Edited by Hadidi, A, Flores, R, Randles, JW, and Palukaitis, P, Academic Press Ltd-Elsevier Science Ltd, Pages 243-249

Serra, P., Barbosa, C. J, Daros, J. A., Flores, R., Duran-Vila, N. 2008a. Citrus viroid V: molecular characterization and synergistic interactions with other members of the genus Apscaviroid. Virology 370, 102112.

Serra, P., Eiras, M., Bani-Hashemian, S. M., Murcia, N., Kitajima, E.W., Daro`s, J. A., et al., 2008b. Citrus viroid V: occurrence, host range, diagnosis, and identification of new variants. Phytopathology 98, 11991204.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-738-6693, plant.health[@]cdfa.ca.gov.


Comment Period:*

9/13/18 – 10/28/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Posted by ls 

Mango Scale | Aulacaspis tubercularis Newstead

California Pest Rating for
Aulacaspis tubercularis Newstead: Mango scale
Hemiptera: Diaspididae
Pest Rating: A

PEST RATING PROFILE

Initiating Event:

Aulacaspis tubercularis is frequently intercepted by CDFA. It is currently rated Q, and a pest rating proposal is required to support a permanent pest rating.

History & Status:

Background: Aulacaspis tubercularis is commonly known as white mango scale, mango scale and Cinnamon scale. Immatures and adult females of this scale are covered by a white scale cover that is semi-circular in females and elongate in males. Immatures and adult females feed on plant fluids. Aulacaspis tubercularis is highly polyphagous and damages a wide range of perennials, ornamentals, and fruit trees.

Mango (Mangifera indica) is the preferred host of this pest, but it has been reported to feed on a wide variety of plants in at least 30 genera in 18 families including: Anacardiaceae, Annonaceae, Arecaceae, Burseraceae, Cucurbitaceae, Calophyllaceae, Iridaceae, Lauraceae, Loranthaceae, Meliaceae, Myrtaceae, Percidae, Pittosporaceae, Rhizophoraceae, Rosaceae, Rutaceae, Sapindacea and Zingiberaceae (García Morales et al. 2018).

Worldwide Distribution: Aulacaspis tubercularis is widely distributed in all tropical Africa, including Madagascar, Mauritius, Reunion, Rodriques Island, and South Africa, and most of the Neotropical region.  In Asia it is reported from China, Japan, India, Indonesia, Malaysia, Pakistan, Philippine, Sri Lanka, Taiwan, Thailand, Egypt, Iraq and Israel (Hodges & Hamon 2016).

In the United States, this scale was reported in Florida. Puerto Rico and the U.S. Virgin Islands (García Morales et al. 2018).

Distribution Map by CABI
Distribution Map by CABI

Official Control: Aulacaspis tubercularis is listed as a harmful organism in Costa Rica, Korea, Seychelles, Guatemala, and Ecuador (PCIT, 2018).

California Distribution: Aulacaspis tubercularis has never been found in the environment in California.

California Interceptions: Aulacaspis tubercularis was intercepted 273 times in California since 2010. Most of these interceptions were on infested mangoes coming from South American countries (CDFA PDR database).

The risk Aulacaspis tubercularis (mango scale) would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Hosts plants of Aulacaspis tubercularis are grown throughout California and southern coastal weather is quite favorable for this insect to spread and become established wherever its hosts are grown. It receives a Medium (2) in this category.

Evaluate if the pest would have suitable hosts and climate to establish in California:

Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Aulacaspis tubercularis has been reported to feed on plants in at least 30 genera in 18 families. It receives a High (3) in this category.

Evaluate the host range of the pest.

Low (1) has a very limited host range.

Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Aulacaspis tubercularis has a high reproductive rate; adult females can lay up to 200 eggs. (Miller and Davidson, 2005). This scale can be spread by wind or by hitchhiking on animals or equipment. It may also be spread long distances through the movement of infested plants or fruit. Therefore, it receives a High (3) in this category.

 Evaluate the natural and artificial dispersal potential of the pest.

Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: There is little information available on the economic importance of this pest other than that it considered a major pest of mango in many parts of the world (Miller and Davidson, 1990). Known hosts also include cucurbits, citrus, Prunus, and avocado.  The scale may lower yields in these crops and increase production costs by triggering new management programs. It is not expected to change cultural practices, vector other organisms, injure animals, or disrupt water supplies. It receives a High (3) in this category.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Aulacaspis tubercularis is not expected to lower biodiversity, disrupt natural communities, or change ecosystem processes. No known hosts of the scale are listed as threatened or endangered species in California and the scale is not expected to affect critical habitats. It might trigger new chemical treatments in agriculture and by residents who find infested plants unsightly. It receives a Medium (2) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact:  D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact: Score: 2

Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Aulacaspis tubercularis (mango scale):  High (13)

Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

6) Post Entry Distribution and Survey Information: Aulacaspis tubercularis has never been found in the environment in California and receives a Not Established (0) in this category

Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

-Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score

The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (13)

Uncertainty:

Aulacaspis tubercularis is commonly intercepted on mango shipments coming from South America and presumably has remained undetected on other consignments. It is possible that it is present in some parts of California or may have failed to establish.

Conclusion and Rating Justification:

Aulacaspis tubercularis apparently is not present in California.  If it became established here, it could cause significant economic and environmental impacts. An “A” rating is justified.


References:

García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y., and Hardy, N. B. 2016.  Aulacaspis tubercularis.  Scale Net: A literature-based model of scale insect biology and systematics. Accessed June 22, 2018:  http://scalenet.info/catalogue/Aulacaspis%20tubercularis/

Hodges, G. and Hamon, A. 2016.  Pest Alert Florida, FDACS-P-01697 Accessed June 22, 2018: https://www.freshfromflorida.com/layout/set/print/content/download/67879/1610662/version/1/file/Pest+Alert+-++Aulacaspis+tubercularis%2C+White+Mango+Scale.pdf

USDA Phytosanitary Certificate Issuance & Tracking System (PCIT). Phytosanitary Export Database (PExD). Harmful organism report: Aulacaspis tubercularis. Accessed June 22, 2018:  https://pcit.aphis.usda.gov/pcit/

CDFA Pest and Damage Report Database, 2011. Aulacaspis tubercularis. Plant Health and Pest Prevention Services. CA Department of Food and Agriculture. Accessed June 22, 2018: http://phpps.cdfa.ca.gov/user/frmLogon2.asp


Author:

Javaid Iqbal, 1220 N Street, Sacramento, CA, 95814, (916) 654-1211, plant.health[@]cdfa.ca.gov.

Responsible Party:

Jason Leathers, 1220 N Street, Sacramento, CA, 95814, (916) 654-1211, plant.health[@]cdfa.ca.gov.


Comment Period:* CLOSED

8/14/18 – 9/28/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A


Posted by ls 

 

Ditylenchus dipsaci (Kühn, 1857) Filipjev, 1936

California Pest Rating for
Ditylenchus dipsaci (Kühn, 1857) Filipjev, 1936
Pest Rating: C

 


PEST RATING PROFILE
Initiating Event: 

None. The current rating and status of Ditylenchus dipsaci in California are re-evaluated.

History & Status:

Background:  During the 1920s, the stem and bulb nematode was one of the earliest nematodes known to affect garlic and narcissus production in California where it continues to be a major pest of garlic, onion and alfalfa (Siddiqui, 1973). In alfalfa, damage is most severe in moist, cool weather in cooler, sprinkler-irrigated inland valley and foggy coastal areas of California, and the nematode may be found as far south in the Central Valley as Madera County (Westerdahl, 2007).  Ditylenchus dipsaci, the stem and bulb nematode, is one of the most devastating plant parasitic nematodes on a wide range of plants and is distributed worldwide especially in temperate regions.  It is a migratory endoparasitic nematode that feeds and inhabits mostly aerial parts of host plants (stems, leaves, inflorescence, seeds) but also invades below ground modified parts (bulbs, tubers, stolons, rhizomes and rarely roots).  Ditylenchus dipsaci has been documented in early reports as a complex containing several species (Sturhan and Brzeski, 1991).  However, D. dipsaci sensu stricto can now be distinguished from other related species by host plant range, chromosome number, morphometric values and gene sequences (Subbotin et al., 2005).

Disease cycle: D. dipsaci completes a life cycle from egg to egg in about 21 days at 59°F and a female lays 200-500 eggs within garlic and onion tissue, and egg development occurs between 59 and 70°F (Becker and Westerdahl, 2018).  Several generations can occur over one growing season. Under favorable moisture and temperature conditions, preadults become active, swim in films of water in soil or on wet plant surfaces, and attack a germinating seed or seedling entering near the root cap or within the seed. Nematodes remain intercellular and feed on parenchymatous tissue causing cell division and enlargement.  In young plants, the nematodes enter leaves through stomata or directly through the epidermis in leaf bases – resulting in cell enlargement, disappearance of chloroplasts, and increase in intercellular spaces.  As bulbs enlarge, the nematodes move down the leaves intercellularly or on the surface of leaves and re-entering at the outer sheaths of the stem or neck to infect the outer scales of bulbs.  Middle lamellae of cells and cells break down forming large cavities and stems lose their rigidity and collapse. Nematodes continue to feed through the parenchymatous outer scales.  The macerated tissue has a white mealy texture but soon turn brown due to secondary invasion.  In early stages the nematodes remain within individual scales causing complete or incomplete rings of frosty white or brown tissue.  Later, the nematodes infect more scales even after harvest and in storage usually resulting in totally infecting a bulb.  When heavily infected bulbs decay, preadults exit and accumulate about the basal plates of dried bulbs as cottony masses called “nematodes wool” and can survive there for years (Agrios, 2005; Westerdahl and Becker, 2018).  Survival: The pre-adults or fourth stage larvae can survive freezing or extreme dry conditions in anhydrous state for long periods in plant tissue, stems, leaves, bulbs, seeds or in soil (Agrios, 2005).

Dispersal and spread:  Infested plant material including bulbs, stems, leaves, and seeds; infested soil, contaminated cultivation tools and equipment, contaminated irrigation and splash water.

Hosts: There are more than 500 plant species in over 40 angiosperm families that are known to be hosts of D. dipsaci.  Many of the biological races of D. dipsaci have limited host ranges (EPPO, 2008).  In California, D. dipsaci is an important nematode pest particularly of onion, garlic, and alfalfa.

Symptoms: Emergence of infected onion seedlings is retarded, with reduced stands, appearing pale green to yellow, twisted and arched and collapsed.  Most infected seedlings die within three or more weeks.  Developing plants exhibit stunting, light yellow or brown spots, swellings (spikkles) and open lesions, swollen and deformed stems, thickened, curled, distorted leaves, collapse of leaves and premature drying and defoliation; and bloated tissue with a spongy appearance, leaf tips often exhibit a gray to brown dieback.  Older plants may also die before harvest.

Bulb tissue begins softening at the neck and gradually proceeds downwards.  Young bulbs are soft, swollen and malformed, and exhibit a coarse-textured tissue beneath the outer scale.  Bulb scales appear pale gray, soft, and loose.  Bulb tissue underneath the loose outer scales is soft, puffy, mealy and frosty in appearance.  Affected scales appear as discolored rings in cross sections of infected bulbs, and as irregular, discolored lines in longitudinal sections.  Individual cloves or, in severe cases, larger areas of the bulb become affected.  Bulbs may split, become malformed, or produce sprouts and double bulbs.  Under dry conditions bulbs become desiccated, light in weight, odorless, and split at the base.  Basal plate and roots of severely infested bulbs may also appear to a have a dry rot and can be easily separated from the bulbs, mimicking symptoms of Fusarium basal plate rot.   Under moist conditions, secondary invaders set in and bulbs rots and decay.  In storage, bulbs decay (EPPO, 2008).

Carrots and sugar beet: The plant is most affected at 2-4 cm below and above ground level.  Early symptoms include straddled (collapsed on both sides) leaves, multi-bud plant crowns and light discoloration of taproot tops (EPPO, 2008).

Alfalfa:  Nematodes enter bud tissue and developing buds.  Infected stems are enlarged, discolored – later may turn black as nematode numbers increase, swollen nodes, shortened internodes (stunted). Infected plants have fewer shoots, and deformed buds.   White or pale flags (destruction of chloroplasts) are formed as nematodes move to leaf tissue (EPPO, 2008).

Seeds:  Small seed generally show no symptoms of infestation, but the skin of larger seeds, (Phaseolus vulgaris, Vicia faba), may be shrunken with discolored spots (EPPO, 2008).

Damage Potential: If not controlled, the stem and bulb nematode has the potential to affect host crop production by reducing yield and quality, increasing costs of nematode-free production, and management options.  The seedborne capability of D. dipsaci would impact international trade of host seed and planting stock, if the latter were found infested with the nematode. However, California’s Seed Certification Program that ensures the use of clean, nematode-free seeds, has provided California garlic growers a strong preventive measure against the stem and bulb nematode.

Worldwide Distribution: Asia: Armenia, Azerbaijan, China, Republic of Georgia, India, Iran, Iraq, Israel, Japan, Jordan, Kazakhstan, Republic of Korea, Kyrgyzstan, Oman, Pakistan, Syria, Taiwan, Turkey, Uzbekistan, Yemen; Africa: Algeria, Kenya, Morocco, Nigeria, Réunion, South Africa, Tunisia; Europe: Albania, Austria, Belarus, Belgium, Bosnia-Hercegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Czechoslovakia (former), Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Macedonia, Malta, Moldova, Netherlands, Norway, Poland, Portugal, Romania, Russian Federation, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom, Ukraine, Yugoslavia; North America: Canada, Mexico, USA; Central America and Caribbean: Costa Rica, Dominican Republic, Haiti; South America: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, Venezuela; Oceania: Australia, New Zealand (CABI, 2018).

In the USA it has been reported from several states including: Alabama, Arizona, California, Colorado, Hawaii, Idaho, Michigan, Minnesota, Montana, Nevada, New Hampshire, New York, North Carolina, Ohio, Oregon, South Dakota, Utah, Virginia, Washington, Wyoming (CABI, 2018).

Official Control: Currently, D. dipsaci is on the ‘Harmful Organism Lists’ for 50 countries including:  Algeria, Antigua and Barbuda, Bangladesh, Brazil, Canada, Chile, China, Cook Islands, Costa Rica, Cuba, Egypt, El Salvador, European Union, French Polynesia, Georgia, Grenada, Guatemala, Holy See (Vatican City State), Honduras, India, Indonesia, Israel, Jordan, Lebanon, Madagascar, Mexico, Monaco, Morocco, Namibia, New Caledonia, New Zealand, Nicaragua, Norway, Panama, Paraguay, San Marino, Serbia, South Africa, Sri Lanka, Taiwan, United Republic of Tanzania, Thailand, Timor-Leste, Tunisia, Turkey, Uganda, United Arab Emirates, Uruguay, Viet Nam, and Yemen   (USDA PCIT, 2018).

California Distribution: Ditylenchus dipsaci is widely distributed in California.

California Interceptions:  None.

The risk Ditylenchus dipsaci would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Ditylenchus dipsaci is already widespread within California. The state provides suitable hosts and climate for the establishment and spread of dipsaci to uninfected sites.

Evaluate if the pest would have suitable hosts and climate to establish in California.  Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Ditylenchus dipsaci has a very wide host range comprising more than 500 plant species in over 40 angiosperm families. The species also has several biological races which have limited host ranges.  In California, dipsaci is an important nematode pest particularly of onion, garlic, and alfalfa.

Evaluate the host range of the pest. Score: 3

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

High (3) has a wide host range.

3) Pest Dispersal Potential: The nematode is dispersed artificially mainly through Infested plant material including bulbs, stems, leaves, and seeds; infested soil, contaminated cultivation tools and equipment, contaminated irrigation and splash water.  The ability to survive anhydrously over adverse environmental conditions particularly within plant seed and infested planting stock enables dipsaci for long distance movement over extends periods of time.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 2

– Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

Economic Impact: If left unmanaged, the stem and bulb nematode has the potential to affect host crop production by reducing yield and quality, changing normal cultural practices including supply of irrigation water to field grown crops, and increasing costs of nematode-free production. The seedborne capability of dipsaci would impact international trade of host seed and planting stock, if the latter were found infested with the nematode. However, California’s Seed Certification Program that ensures the use of clean, nematode-free seeds, has provided California garlic growers a strong preventive measure against the stem and bulb nematode, and the use of resistant varieties is regarded the most effective control of D. dipsaci in alfalfa.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C, D, G

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: Ditylenchus dipsaci has not been reported to have significant environmental impact in California.  Home gardening and ornamental plantings are usually protected against the nematode through use of nematode-free planting materials.

Evaluate the environmental impact of the pest on California using the criteria below.

Environment Impact: None

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score:

Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Ditylenchus dipsaci: 11

Add up the total score and include it here. (Score)

-Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 11

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Evaluation is in California.

Score: (-3)

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 8

Uncertainty:  

None.

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Ditylenchus dipsaci is C.


References:

Agrios, G. N.  2005.  Plant Pathology (Fifth Edition).  Elsevier Academic Press, USA.  922 p.

Becker, J. O. and Westerdahl, B. B.  2018. Onion and garlic nematodes. UCIPM Statewide Integrated Pest Management Program, University of California Agriculture and Natural Resources. (Updated 2/07). http://ipm.ucanr.edu/PMG/r584200111.html

CABI.  2018. Ditylenchus dipsaci full datasheet. Crop Protection Compendium.  https://www.cabi.org/cpc/datasheet/19287

EPPO.  2008.  Ditylenchus destructor and Ditylenchus dipsaci Diagnostics.  European and Mediterranean Plant Protection Organization. OEPP/EPPO Bulletin 38: 363-373.

Siddiqui, I. A., Sher, S. A., and French, A. M. 1973. Distribution of plant parasitic nematodes in California. State of California Department of Food and Agriculture, Division of Plant Industry, 324 p.

Sturhan, D., and Brzeski, M. W. 1991. Stem and bulb nematodes, Ditylenchus spp. In: Manual of Agricultural Nematology Ed. Nickle, W. R., pp.423–464. Marcel Dekker, Inc., New York (US).

Subbotin, S. A., Madani, M. Krall, E., Sturhan, D., and Moens, M. 2005. Molecular diagnostics, taxonomy, and phylogeny of the stem nematode Ditylenchus dipsaci species complex based on the sequences of the internal transcribed spacer-rDNA. Phytopathology 95: 1308-1315.

USDA PCIT.  2018.  USDA Phytosanitary Certificate Issuance & Tracking System. Retrieved July 26, 2018, 1:20:45 pm CDT.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.

Westerdahl, B. B. 2007. Parasitic nematodes in alfalfa. In Irrigated Alfalfa Management for Mediterranean and Desert Zones. University of California Division of Agriculture and Natural Resources Publication 8297 Chapter 11.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Comment Period:* CLOSED

8/2/18 – 9/16/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: C

 


Posted by ls 

 

Two-lined Spittlebug | Prosapia bicincta (Say)

California Pest Rating for
Prosapia bicincta (Say): Two-lined spittlebug
Hemiptera-Cercopidae
Pest Rating: A

 


PEST RATING PROFILE

Initiating Event:

Prosapia bicincta Say is present in the Eastern United States. It has been intercepted by CDFA three times in 2017, with the most recent interception occurring at the Needles inspection station on a shipment of Citrus from Atlanta, Georgia. This species has a temporary Q rating pending risk analysis in California. A pest rating proposal is required to assign a permanent rating

History & Status:

BackgroundProsapia bicincta are true bugs that occur from the states of Maine to Florida, and west to Iowa, Kansas and Oklahoma (Campbell, 2016). Nymphs and adults are xylem feeders and feed on any plants that provide fluid to meet its requirements (Pass and Reed, 1965). Its main hosts include grasses, ornamental plants, crops and weeds. Their damage is most noticeable when immature stages of the insect produce masses of frothy spittle while feeding on the host. This spittle encircles the twigs and young leaves of the hosts (Cornille 2005, Godwin, 2008).

Adults are 8-10 mm long and dark brown to black in color. They generally have two red-orange lines crossing the wings. However, adults can be marked sometimes. They are most active in early morning and hide near the soil surface or in the foliage for the rest of the day. At night, adults become active and are attracted to lights (Campbell, 2016).

Prosapia bicincta is an important pest of pasture grass in the south eastern United States. Both adults and nymphs absorb plant juices with their piercing & sucking mouth parts; with adults causing the most damage. Adults inject a poison at the feeding site and this poison causes loss of chlorophyll in the host, resulting in drying out and death of plants. (Campbell, 2016)

Worldwide Distribution:

Prosapia bicincta is native to North America and is present in Cuba, the United States and Canada (CABI 2017). In the United States, it ranges from Maine to Florida in the east and Iowa, Kansas and Oklahoma, Texas and Arkansas in the west.

Official Control: Prosapia bicincta has been listed as a harmful organism in Brazil, Colombia and Japan (PCIT, 2018).

California DistributionProsapia bicincta has never been found in the natural environment of California.

California InterceptionsProsapia bicincta was intercepted 35 times between January 1990 and January 2018 by CDFA through detection surveys, border stations, and federal exterior quarantine activities (CDFA Pest and Damage Report Database, 2018)

The risk Prosapia bicincta (two lined spittlebug) would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Prosapia bicincta needs a humid, moist environment and cannot survive in draught conditions. Nymphs camouflage by living in foam nest that they make by blowing bubbles through their abdomen into plant juices. More insects have been reported during the rainy years when more thatch is available. Nests usually occur near soil surface or in thatch. (Campbell, 2016) Since it is a native species and widely prevalent in south-eastern US and some western states, it is likely to be introduced and established in California during the moist and wet winter months. It receives a Medium (2) in this category.

Evaluate if the pest would have suitable hosts and climate to establish in California:

Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Prosapia bicincta is known to feed on nine families of ornamental and crop plants (John Pickering, 2018). Nymphs primarily feed on centipede grass, coastal bermudagrass and other bermudagrass cultivars. Damage has been reported on other grasses such as pangolagrass, and St. Augustine grass. Other susceptible hosts include sweet corn, seashore paspalum, zoysiagrass, and tall fescue. Adults feed on ornamental hollies used in landscapes. (Nachappa, 2004). Most of these hosts are present throughout California. It receives a High (3) in this category.

Evaluate the host range of the pest:

Score: 3

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Prosapia spp. females lay approximately 45 eggs on average. Eggs hatch in about two weeks. Nymphs undergo four instars within one month. Spittle bugs overwinter as eggs in hollow stems and in thatch at base of the grass. There are two generations in a year (Cornille 2005, Godwin, 2008). This species is most active from late spring through early fall. It receives a Medium (2) in this category.

Evaluate the natural and artificial dispersal potential of the pest:

Score: 2

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Prosapia spps. can reduce forage quality and availability, thereby competing with grazing animals. They are likely to causes huge losses to improved pastures. Prosapia bicincta feed on the underside of the leaves and inject poison that cause the plant to lose its chlorophyll. Nymphs remove a lot of fluid from the plants to continuously produce spittle (Campbell, 2016). Heavily infested pastures turn brown, become unproductive and may experience die back in large patches (Vendramini et al., 2015). Use of cultural practices such as burning of dense mats of infested pastures, stockpiling for grazing in the following season, killing eggs in spring and preventing thatch accumulation can add to production costs. It receives a High (3) in this category.

Evaluate the economic impact of the pest to California using the criteria below:

Economic Impact: A, B, D

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Prosapia bicincta is not likely to lower biodiversity and disrupt natural communities. It is also not known to impact major endangered and threatened species in California. However, if this species is introduced and gets established, it may impact grassland species such asTrifolium amoenum, an endangered annual herb occurring in grassland areas of the San Francisco Bay area and the northern California (California Native Plant Society, 2018). Being an economic pest of grasses, this species is likely to trigger official treatments if it gets established in rangelands in the state.  It receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below:

Environmental Impact:  B, D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact:

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Prosapia bicincta (two lined spittlebug): High (13)

Add up the total score and include it here:

-Low = 5-8 points

-Medium = 9-12 points

High = 13-15 points

6) Post Entry Distribution and Survey Information: Prosapia bicincta (two-legged spittle bug) has never been found in the environment in California and receives a Not Established (0) in this category.

Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included:

Score: 0

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (13)

Uncertainty:

Prosapia bicincta is native to North America and is a most important pest of pastures in southeastern Unites States. This species has not yet been introduced to CA, possibly due to dry weather in most of the state during summer months. However, if it is introduced during rainy and winter months and get established, it could significantly impact the pastures in the state. Because this species is currently established in the southeastern states, any host material coming from those areas could potentially contain P. bicinta. Surveys of California wetlands and coastal areas could be helpful in early detection of this spittlebug. Because it is unable to establish in areas with hot and dry summers, its economic impacts may not be significant.

Conclusion and Rating Justification:

Prosapia bicincta has not been reported in the environment of California and based on weather conditions and time of the year, it is likely to have significant economic and environmental impacts if it were to enter the state.  An “A”-rating is justified.


References:

California Native Plant Society, 2018. Inventory of Rare and Endangered Plants of California, online edition, v8-03 0.39. Accessed April 27, 2018:

http://www.rareplants.cnps.org

Campbell, D. 2016. Brief Summary- Prosapia bicincta (Say 1830). Encyclopedia of Life. Accessed 4/26/2017:

http://eol.org/pages/1079470/details

Cornille, S. 2005 and Goodwin, C. 2008. Two-lined Spittlebug. Texas Agrilife Extension Service. Dickinson, Texas. Accessed April 26, 2018:

https://aggie-horticulture.tamu.edu/galveston/Gardening_Handbook/PDF-files/GH-041–two-lined-spittlebug.pdf

Nachappa, Punya 2004. Biology and management of two lined spittlebug, Prosapia bicincta (Say) (Hempitera: Cercopidae) in turfgrass. MS Thesis. University of Georgia, Athens, GA. Accessed April 26, 2018:

https://getd.libs.uga.edu/pdfs/nachappa_punya_b_200412_ms.pdf

Pass, B. C., and Reed, J.K.1965. Biology and control of the spittlebug Prosapia bicincta in coastal Bermuda grass. J. Econ. Entomol. 58: 275-278:

Pickering, J. 2018. Prosapia bicinca (Say, 1830) Two-lined spittlebug. Discover Life. Accessed April 25, 2018:

http://www.discoverlife.org/20/q?search=Prosapia+bicincta#Hosts

Pest and Damage Record Database. Pest Prevention and Plant Health Services. California Department of Food and Agriculture. Accessed 4/24/2018:

http://phpps.cdfa.ca.gov/user/frmLogon2.asp

Vandramini, J, Debeux, J.C.B. Jr. and Buss, E. 2015. Management of Spittlebugs in Pasture. University of Florida, IFAS Extension. Accessed April 25, 2018:

http://edis.ifas.ufl.edu/ag242

USDA Phytosanitary Certificate Issuance & Tracking System (PCIT) Phytosanitary Export Database (PExD). Accessed 4/24/18: https://pcit.aphis.usda.gov/PExD/faces/PExDReport.jsp


Author:

Raj Randhawa, 1220 ‘N’ Street, Room 221, Sacramento CA 95814, (916) 403-6617, plant.health[@]cdfa.ca.gov.

 

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

7/30/18 – 9/13/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A

 


Posted by ls 

Azalea Leafminer | Caloptilia azaleella (Brants)

California Pest Rating for
Caloptilia azaleella (Brants):  Azalea leafminer
Lepidopetera:  Gracillariidae
Pest Rating: C

 


PEST RATING PROFILE

Initiating Event:

Gracillariidae insects were recently intercepted by CDFA through high risk pest exclusion program on a shipment of azalea plants, originating from Kentucky. The most common Gracillariidae, intercepted on Azalea is Caloptilia azaleella. This insect has been previously rated C by CDFA. A pest rating proposal is required to evaluate the current rating for this species.

History & Status:

BackgroundCaloptilia azaleella are small, yellow moths with purplish markings on the wings. Leaf mining stage is a yellowish caterpillar about half inch long. Caloptilia azaleella is known to attack only azaleas (Rhododendron spp.) worldwide. The larvae mine the leaf tissue; as these mines age, they cause brown blisters on the leaves. The mature larvae emerge from leaf tissue, then roll and tie the edge of the leaves around themselves for protection. They can cause considerable damage to greenhouse grown azaleas in North Carolina (Frank, 2016). Maximum infestation in Florida nurseries was noted from early spring through summer (Dekle, 2007). In Oregon, where it has been  introduced, there are three generations per year.

Worldwide Distribution:

Caloptilia azaleella is endemic to Japan but has been introduced to all azalea growing parts of the world including Europe (southern Britain), New Zealand and eastern Australia (T.E.R.R.A.I.N, 2018).

In the North America, it has been found in the Unites States and Canada from Florida to Texas, Long Island, West Virginia and Ohio, California, Washington and British Colombia (Johnson and Lyon, 1994).

Official Control: Caloptilia azaleella has been listed as harmful organism in Chile (USDA -PCIT).

California DistributionCaloptilia azaleella was introduced to California in 1962 for the first time (Essig Museum Online Database, 2010) and more recently observed in Sonoma county (2017) and Shasta county (2014) (iNaturalist, 2016).

California InterceptionsCaloptilia azaleella has been intercepted through high risk pest exclusion and interior quarantine programs in California (Pest and Damage Report Database, 2018).

The risk Caloptilia azaleella ( azalea leaf miner) would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Rhododendron spp. grow best in filtered shade and prefer acidic soils with high organic content and excellent drainage (Pests in garden and Landscapes, 2017). This type of climate is found in northern California and extends down the coast to San Francisco Bay (American Rhododendron Society, 2018). Some of the maddenii-type rhododendron can grow in southern California as well. Since C. azaleella is already introduced and present in Northern CA, its introduction and spread to the rest of the state is likely. It receives a Medium (2) in this category.

Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Caloptilia azaleella feeds only on Rhododendron spp. It receives a Low (1) in this category

Evaluate the host range of the pest:

Score: 1

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Caloptilia azaleella deposits 1-5 eggs on the undersurface of leaves during spring time. The life cycle is completed in one week. It overwinters as a last instar larva or pupa in a rolled leaf. Larva can be found on leaves all year around. There are three generations in western states and three to four generations in southern states. Because azaleella does not leave its host during the entire life cycle, it does not spread over large distances. However, movement of infected azalea nursery stock could likely disperse this species. It receives a Medium (2) in this category.

Evaluate the natural and artificial dispersal potential of the pest:

Score: 2

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Caloptilia azaleella is a pest of container and field grown nursery stock but can also attack landscape grown plants. Heavy infestation may not kill the plant, especially if it can be controlled during early stages of growth but the damage is likely to affect the appearance and quality of the plant. Increased cost of pruning of infested branches and release of parasitoids can add to production costs and decrease the value of the crop (Dekle, 2007). It receives a Medium (2) in this category.

Evaluate the economic impact of the pest to California using the criteria below:

Economic Impact: A, B, D

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Caloptilia azaleella is not likely to lower biodiversity and disrupt any natural habitats. It has also not been reported to affect any endangered species, either directly or indirectly. It could attack native rhododendron and native azaleas but unlikely to cause significant damage. The infestations of azaleas would likely trigger chemical treatments by homeowners. It receives a Medium (2) in this category.

Evaluate the environmental impact of the pest on California using the criteria below:

Environmental Impact: D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact:

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Caloptilia azaleella (azalea leaf miner): Medium (10)

Add up the total score and include it here:

Low = 5-8 points

-Medium = 9-12 points

-High = 13-15 points

6) Post Entry Distribution and Survey Information: Caloptilia azaleella (azalea leafminer) has been found in the environment and receives a Low (-1) in this category.

Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included:

Score: -1

-Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

The final score is the consequences of introduction score minus the post entry distribution and survey information score: Medium (9)

Uncertainty:

Caloptilia azaleella is present in azalea growing areas in Northern California and has also been detected by CDFA from time to time. However, it is not widespread in the state, possibly due to its inability to attack any other host plants. There are some varieties of Rhododendron, being grown in Southern CA and it may be present in large azalea growing areas than is currently known

Conclusion and Rating Justification:

Caloptilia azaleella has been reported in the environment of California. However, it is not likely to have significant economic and environmental impacts. A “C” rating is justified.


References:

 American Rhododendron Society (ARS): California Chapter, 2018. Plant Culture and Care. P.O. Box 214, Great River, NY 11739. Accessed 6/14/2018: http://www.rhododendron.org/climate.htm http://www.calchapterars.org/

Dekle, G.W. 2007. Azalea Leaf miner: Featured Creatures. Entomology and Plant Pathology. Publication # EENY-379, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, University of Florida. Accessed 6/14/2018:  http://entnemdept.ufl.edu/creatures/orn/shrubs/azalea_leafminer.htm

Essig Museum Online Database, 2010. California Moth Specimen Database. University of California, Berkeley. Accessed 6/21/2018  https://essigdb.berkeley.edu/calmoth.html

Frank, S. 2016. Azalea leafminer. Entomology Insect Notes. North Carolina State Extension Publications North Carolina State Extension. Accessed 6/14/2018:  https://content.ces.ncsu.edu/azalea-leafminer

iNaturalist, 2016. Online crowdsourced species identification system and an organism occurrence recording tool. Gracillariidae of California. Caloptilia azaleella  https://www.inaturalist.org/observations?locale=en-US&place_id=14&taxon_id=320764

Johnson WT and Lyon HH. 1994. Insects That Feed on Trees and Shrubs. 2nd ed. rev. Cornell University Press, Ithaca, NY.

Pest and Damage Report Database, 2018. Caloptilia azaleella. Plant Health and Pest Prevention Services. California Department of Food and Agriculture. Accessed 6/14/2018:  http://phpps.cdfa.ca.gov/user/frmLogon2.asp

Pests in gardens and landscapes, 2017. Azalea-Rhododendron spp. Agriculture and Natural Resources, University of California. Statewide Integrated Pest Management Program. Accessed 6/15/2018: http://ipm.ucanr.edu/PMG/GARDEN/PLANTS/azalea.html

Reding, Tom. 2018. Caliptilia azaleella. Wikipedia- the free encyclopedia. Accessed 6/19/2018:  https://en.wikipedia.org/w/index.php?title=Caloptilia_azaleella&oldid=825762750#References

Richers, K. 1996. California Moth Specimens Database. Caloptilia azaleella. University of California, Berkeley. Accessed 6/21/018. https://essigdb.berkeley.edu/calmoth_about.html

Taranaki Educational Resource: Research, Analysis and Information Network. (T.E.R.R.A.I.N.), 2018. “Caloptilia azaleella (Azalea leafminer moth)”. The MAIN trust GIS community project. Government of New Zealand. Accessed 6/14/2018: http://www.terrain.net.nz/friends-of-te-henui-group/moths/caloptilia-azaleella-moth-azalea-leafminer-caloptilia-azaleella.html

USDA Phytosanitary Certificate Issuance & Tracking System (PCIT) Phytosanitary Export Database (PExD). Harmful organism report: Caloptilia azaleella. Accessed 6/14/2018.  https://pcit.aphis.usda.gov/pcit/


Author:

Raj Randhawa, 1220 ‘N’ Street, Room 221, Sacramento CA 95814, (916) 403-6617, plant. health[@]cdfa.ca.gov

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

7/30/18 – 9/13/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: C

 


Posted by ls 

Meloidogyne floridensis Handoo et al., 2004

California Pest Rating for 
Meloidogyne floridensis Handoo et al., 2004
Pest Rating: A

 


PEST RATING PROFILE

Initiating Event: 

On March 8 and 29, and April 19, 2018, unidentified root knot nematode female and juvenile specimens and galled Prunus sp. roots were sent by A. Westpahl, University of California, Parlier, CA, to S. A. Subbotin, Nematology Lab, CDFA, for identification of the nematode species. After several molecular tests, S. A. Subbotin determined the identity of the species as M. floridensis – a root knot nematode species not known to be present in California and quarantine actionable. The root samples had been collected from an almond orchard in Merced County.  Consequently, the field was visited by J. Chitambar, CDFA, S. A. Subbotin, A. Westpahl, and D. Doll, UC Cooperative Extension Merced County.  Official root and rhizosphere soil samples from apparently stunted and non-stunted 2-3-year-old almond scion on Hansen and non-stunted 8-9-year-old Nemaguard rootstock plantings, were collected from an estimated 3-acres of the infested orchard by J. Chitambar and S. A. Subbotin.  The samples were processed for nematode diagnosis at the CDFA Nematology Lab in Sacramento.  On July 18, 2018, S. A. Subbotin identified the root knot nematode species, M. floridensis, in galled roots and associated rhizosphere soil samples collected from the stunted plants as well as the older plantings.  The risk of infestation of M. floridensis in California is assessed and a permanent rating is herein proposed.

History & Status:

Background:  Meloidogyne floridensis was first detected in 1966 in Gainesville, Florida, as an unnamed root knot nematode species parasitizing M. incognita and M. javanica – root knot nematode-resistant Nemaguard and Okinawa peach rootstocks (Sharpe et al., 1969) and later Nemared peach rootstock (Sherman et al., 1991).  At that time, the unnamed species was referred to as the ‘Nemaguard type root knot nematode’, ‘a new nematode’ and a ‘biotype of root knot nematode’ (Sharpe et al., 1969; Sherman et al., 1981; Young and Sherman, 1977).  Then in 1982, this nematode was characterized as race 3 of M. incognita (Sherman & Lyrene, 1983), however, subsequent morphological, molecular and host range studies proved this species to differ from M. incognita race 3 and other species (Nyczepir et al., 1998), and in 2004, Handoo et al. described it as a new species, M. floridensis and proposed the common name, ‘peach root knot nematode’.

The peach root knot nematode is one of the most important root knot nematode species because it can overcome resistance in plants by reproducing in high-value crops carrying genes for resistance against the main Meloidogyne spp., thereby causing substantial reduction in crop growth and yields.  In 2005, M. floridensis was reported for the first time in field-grown tomato in Florida (Church, 2005).

Since its original detection, M. floridensis has only been reported in Florida, infecting different crops, peaches, and weed species in 12 counties (Brito et al., 2015).  During 2015 to 2017, and in support of a survey conducted in Florida, Subbotin molecularly identified M. floridensis in nematode samples collected from nine peach orchards in six counties.  These results added four new counties to the previously reported 12 counties, thereby indicating an increased distribution of the peach root knot nematode to 16 counties over a relatively short duration (S. A. Subbotin, Senior Plant Nematologist, CDFA: personal communication).  The recent 2018 detection marks its first official and limited detection within California and outside the State of Florida. An earlier incident occurred in 2011 when M. floridensis was detected in a tomato soil and root sample submitted to, and diagnosed by a nematologist at the University of California, Davis.  The sample had originated from a commercial tomato field in Kern County. However, on further investigation by CDFA, the crop had been destroyed by the grower and the field was left fallow without any vegetation before being planted to a non-host.  Consequently, and after repeated sampling of the field, CDFA did not find any plant parasitic nematodes and the presence of M. floridensis was not substantiated nor has it ever been reported in California.

Development and life cycle: Meloidogyne floridensis is a root knot nematode species with a life cycle and feeding behavior similar to other root knot nematode species.  It is an obligate, sedentary endoparasite that feeds within host plant roots.  Adult females embedded in host roots produce eggs within a mass either on the surface of, or within roots.  The first stage juvenile develops within the egg and molts to develop into the second stage.  The second-stage juveniles (J2) are the infective stage that hatch from eggs, migrate in rhizosphere soil to host roots, re-infest the roots or are attracted to other nearby host roots which are then penetrated.  Within roots, J2 establish a specialized feeding site or giant plant cells that are formed at the head end of the nematode in response to its feeding.  The second stage juveniles become sedentary while feeding at the specialized site, increase in size and undergo two more molts and non-feeding stages before developing into mature adult females or males and completing the life cycle.  Reproduction is by mitotic parthenogenesis.  Generally, the life cycle for root knot nematodes may take about 30 days at 25-28°C and longer at lower temperatures.

Dispersal and spread:  Infected roots, bare root propagative material, infested soils, root debris, and irrigation water.

Hosts: Meloidogyne floridensis infects peach (Prunus persica) as well as other agricultural and ornamental crops and weeds.

Agricultural crops include: basil (Ocimum basilicum cv. Genovese), common bean (Phaseolus vulgaris), corn (Zea mays cvs. Dixie 18 and Mp 710), crimson clover (Trifolium incarnatum), cucumber (Cucumis sativus), dill (Anethum graveolens), eggplant (Solanum melongena), gourd (Cucurbita pepo), green bean (Phaseolus vulgaris cvs. Fortex and Heavyweight II), lima bean (Phaseolus lunatus cv. Big Mama), mustard (Brassica juncea cv. Florida Broadleaf), pepper (Capsicum annuum cvs. California Wonder, Charleston Bell), snapbean (Phaseolus sp.), squash (Cucurbita moschata cv. Yellow Crookneck), sugar beet (Beta vulgaris cvs. Alota, Bobcat, Mandella and Trinita), tobacco (Nicotiana tabacum cv. NC 95), tomato (Solanum lycopersicon cvs. Florida 47, Rutgers, Solar Set, and tomato hybrid Crista), vetch (Vicia sativa), and watermelon (Citrullus lanatus) (Brito et al., 2008, 2010; Cetintas et al., 2007; Church, 2005; Esmenjaud, 2009; Mendes and Dickson, 2010a, 2010b; Kokalis-Burelle and Nyczepir, 2004; Stanley et al., 2006; 2009).

Ornamental plant hosts include: calendula (Calendula officinalis cv. Oktoberfest), dracaena (Dracaena sp.), hibiscus (Hibiscus sp.), impatiens (Impatiens wallerana), snapdragon (Phaseolus sp.), and verbena (Verbena rigida) (Brito et al., 2010; Mendes and Dickson, 2010b; Kokalis-Burelle and Nyczepir, 2004).

Weed hosts (under greenhouse conditions) include: amaranth (Amaranthus spinosus); American pokeweed (Phytolacca americana), barnyard grass (Echinochloa muricata), cyprusvine (Ipomoea quamoclit), dichondra (Dichondra repens), English watercress (Nasturtium officinale), molinillo (Leonotis nepetaefolia), morning glory (Ipomoea triloba and I. violacea), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), spurge nettle (Cnidoscolus stimulosus), velvet leaf (Abutilon theophrasti), wild mustard (Brassica kaber), wild cucumber (Cucumis anguria), and zebrina (Zebrina pendula) (Kaur et al., 2007, Stanley et al., 2006).

Symptoms: Symptoms in plants induced by M. floridensis are similar to those induced by other economically important root knot nematode species.  Above ground symptoms include stunting, yellowing of leaves, wilting of plants, and canopy dieback.  Field symptoms of affected plants may appear in patches, depending on the nematode population density.  Below ground, swellings and galls are produced in young and major roots of infested plants.  Root galls can harbor second to fourth stage juveniles, swollen adult females, and egg masses containing variable numbers of eggs.  Second stage juveniles are the motile infective stage and can be found in roots and rhizosphere soil (Brito et al., 2015).

Damage Potential: Meloidogyne floridensis can break resistance in peach and other crops that are reported to be resistant to root knot nematodes namely tomato hybrid cv. Crista and corn cv. Mp 710 (Stanley et al., 2009).  Peach rootstocks ‘Nemaguard, ‘Okinawa’, ‘Nemared’, and ‘Guardian’ with resistance to the southern root knot nematode, M. incognita, the Javanese root knot nematode, M. javanica, and the northern root knot nematode, M. hapla, are susceptible to the peach root knot nematode, M. floridensis (Brito et al., 2015; Sherman and Lyrene, 1983). Small numbers of M. floridensis have been found infecting root knot nematode resistant ‘Flordaguard in Florida’s commercial orchards (Brito and Stanley, 2011).  Handoo et al., (2004) confirmed previous reports that none of the Amygdalus subgenus (grouping of peach and almond) of the genus Prunus provided suitable resistance to M. floridensis.  In California, the introduction, establishment, and spread of M. floridensis is of concern as ninety percent of the peach industry in the state is planted on Nemaguard rootstock (Westerdahl and Duncan, 2015).  Productions on hybrid rootstocks with parentage susceptible to M. floridensis such as Hansen 536 (almond – ‘Nemaguard’ hybrid rootstock) detected in California, are also threatened by the nematode (see ‘Initiating Event’).  Furthermore, reproduction of M. floridensis on resistant peach cultivars and other host crops would challenge implementation of management strategies in infested regions especially with increased use of root knot resistance with the absence or restricted use of nematicides (Brito et al., 2015).

Worldwide Distribution: Since its original detection, M. floridensis has only been reported from Florida.  The species has only recently been detected in an almond orchard in California (see ‘Initiating Event’).

Official Control:  Presently, Meloidogyne floridensis is on the ‘Harmful Organism List’ for the Republic of Korea (USDA PCIT, 2018).

California Distribution: Merced County (limited distribution).

California Interceptions:  There are no records of the detection of Meloidogyne floridensis in incoming shipments of plants and soil to California.

The risk Meloidogyne floridensis would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: California has suitable climate and hosts for the introduction, establishment and spread of floridensis. Already the detection of this species within a limited region of the State proves it ability to infest and establish in high-value crop production sites as for almond and peach. If left unchecked, other major crops, such as tomato, may also be affected.

Evaluate if the pest would have suitable hosts and climate to establish in California.  Score: 3

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Meloidogyne floridensis has a wide and diverse host range that includes peach, almond, several agricultural crops, ornamentals, and weed hosts.

Evaluate the host range of the pest.

Score: 3

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

High (3) has a wide host range.

3) Pest Dispersal Potential: Meloidogyne floridensis has high reproduction.  A single female floridensis may produce several hundreds to over one thousand eggs in an egg mass, similar to other Meloidogyne species.  Dispersal is mainly passive through the movement of infected roots, planting stock, infested soils and irrigation water.  The potential for spread is high.

Evaluate the natural and artificial dispersal potential of the pest.

Score: 3

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: floridensis is able to break resistance in important crops carrying genes of resistance to the main Meloidogyne spp. thereby causing substantial reduction in crop yields, crop value, loss of markets, including the likely imposition of quarantines by other states and countries against California. Peach rootstocks ‘Nemaguard, ‘Okinawa’, ‘Nemared’, and ‘Guardian’ with resistance to the root knot nematode species widely distributed in California, are susceptible to M. floridensis. In California, the introduction, establishment, and spread of M. floridensis is of concern as ninety percent of the peach industry in the state is planted on Nemaguard rootstock. Productions on hybrid rootstocks with parentage susceptible to M. floridensis such as Hansen 536 (almond – ‘Nemaguard’ hybrid rootstock) are also threatened by the nematode.  Reproduction of M. floridensis on resistant peach cultivars and other host crops would challenge implementation of management strategies in infested regions especially with increased use of root knot resistance with the absence or restricted use of nematicides.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C, D, G

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: Several ornamental plants are hosts of the peach root knot nematode.  Home gardening and ornamental plantings may also be impacted and trigger additional official or private treatment programs. 

Evaluate the environmental impact of the pest on California using the criteria below.

Environment Impact: D, E 

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Meloidogyne floridensis: 15

Add up the total score and include it here. (Score)

-Low = 5-8 points

-Medium = 9-12 points

High = 13-15 points

Total points obtained on evaluation of consequences of introduction to California = 15

6) Post Entry Distribution and Survey Information: Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Evaluation is Low (-1).  Presently, M. floridensis has only been detected within a limited region of an almond orchard in Merced County.

Score: -1

-Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: (Score)

Final Score:  Score of Consequences of Introduction – Score of Post Entry Distribution and Survey Information = 14

Uncertainty:  

The presence and true distribution of M. floridensis in California is not known.  It is possible that the nematodes species may have entered the State undetected prior to 2005.  This is largely because prior to 2005 Meloidogyne spp. were not always identified by the CDFA Nematology Laboratory to species level, when detected in samples that originated outside and within California.  However, since 2005, M. floridensis has never been detected in regulatory samples generated through CDFA’s nematode control and phytosanitary certification programs or through statewide nematode surveys of host plants grown in agricultural production sites and nurseries in California. Also, except for one unsubstantiated record, M. floridensis has not been reported from California by other researchers/nematologists. The status of M. floridensis in non-cultivated and residential environments is not known.  Those environments, as well as infested weed hosts, may serve as sources of inoculum for infestations of cultivated production sites.  Identification to species level through DNA analysis is now essential for accurate identification of this species. 

Conclusion and Rating Justification:

Based on the evidence provided above the proposed rating for Meloidogyne floridensis is A.


References:

Brito, JA, Kaur, R, Cetintas, R, Stanley, JD, Mendes, ML, McAvoy, EJ, Powers, TO, and Dickson, DW.  2008.  Identification and isozyme characterization of Meloidogyne spp. infecting horticultural and agronomic crops and weed plants in Florida.  Nematology 10: 757-766.

Brito, JA, Kaur, R, Cetintas, R, Stanley, JD, Mendes, ML, Powers, TO, and Dickson, DW.  2010.  Meloidogyne spp. infecting ornamental plants in Florida.  Nematropica 40: 87-103.

Brito, JA, and Stanley, JD.  2011.  Nematology Section in Dixon, W. and Andson, P. (Eds.).  Tri-ology, FDACS/DPI, Vol. 50. Number 1.

Cetintas, R, Kaur, R, Brito, JA, Mendes, ML, Nyczepir, AP, and Dickson, DW.  2007.  Pathogenicity and reproductive potential of Meloidogyne mayaguensis and M. floridensis compare with three common Meloidogyne spp.  Nematropica 37: 21-31.

Church, GT.  2005.  First report of the root-knot nematode Meloidogyne floridensis on tomato (Lycopersicon esculentum) in Florida.  Plant Disease 89: 527.

Esmenjaud, D.  2009.  Resistance to root knot nematodes in Prunus: Characterization of sources, marker-assisted selection and cloning strategy for the Ma gene from myrobalan plum. Acta Horticulturae 814: 707-714.

Handoo, ZA, Nyczepir, AP, Esmenjaud, D, Vander Beek, JG, Castagnone-Sereno, P, Carta, LK, Skantar, AM, and Higgins, JA.  2004.  Morphological, molecular, and differential-host characterization of Meloidogyne floridensis n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitizing peach in Florida.  Journal of Nematology 36: 20-35

Kaur, R, Brito, JA, and Rich, JR.  2007.  Host suitability of selected weed species to five Meloidogyne species.  Nematropica 37: 107-120.

Kokalis-Burelle, N., and Nyczepir, AP.  2004.  Host range studies for Meloidogyne floridensis. Journal of Nematology 36: 328

Mendes, ML, and Dickson, DW.  2010a.  Reproduction of root-knot nematodes on four sugarbeat cultivars.  Journal of Nematology 42: 258.

Mendes, ML, and Dickson, DW.  2010b. Suitability of some annual crops to three species of root-knot nematodes.  Nematropica 40: 142.

Nyczepir, AP, Esmenjaud, D, and Eisenback, JD.  1998.  Pathogenicity of Meloidogyne sp. (FL-isolate) on Prunus in the southeastern United States and France.  Journal of Nematology 30: 509.

Sharp, RH, Hesse, CO, Lownsbery, BA, Perry, VG, and Hansen, CJ.  1969.  Breeding peaches for root knot nematode resistance.  Journal of the American Society for Horticultural Science 94: 209-212.

Sherman, WB, and Lyrene, PM.  1983.  Improvement of peach rootstock resistant to root-knot nematodes.  Proceedings of the Florida State Horticultural Society 96: 207-208.

Sherman, WB, Lyrene, PM, and Sharpe, RH.  1991.  Flordaguard peach rootstock. HortScience 26: 427-428.

Sherman, WB, Lyrene, PM, and Hansche, PE.  1981.  Breeding peach rootstocks resistant to root knot nematodes.  HortScience 16: 523-524.

Stanley, JD, Kokalis-Burelle, N, and Dickson, DW.  2006.  Host status of Meloidogyne floridensis on selected weeds and cover crops common to Florida.  Nematropica 36:148 (Abstr.)

Stanley, JD, Brito, JA, Kokalis-Burelle, N, Frank, JH, and Dickson, DW.  2009.  Biological evaluation and comparison of four Florida isolates of Meloidogyne floridensis.  Nematropica 39: 255-271.

USDA PCIT.  2018.  USDA Phytosanitary Certificate Issuance & Tracking System. Retrieved July 19, 2018, 1:47:12 pm CDT.  https://pcit.aphis.usda.gov/PExD/faces/ReportHarmOrgs.jsp.

Westerdahl, BB, and Duncan, RA.  Peach nematodes.  UCIPM Pest Management Guidelines: Peach. UC ANR Publication 3454. http://ipm.ucanr.edu/PMG/r602200111.html

Young, MJ, and Sherman, WB.  1977.  Evaluation of peach rootstocks for root knot and nematode resistance.  Proceedings of the Florida State Horticultural Society 90:241-242.


Responsible Party:

John J. Chitambar, Primary Plant Pathologist/Nematologist, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832. Phone: 916-262-1110, plant.health[@]cdfa.ca.gov.


Comment Period:* CLOSED

7/27/18 – 9/10/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A

 


Posted by ls

 

Twobanded Japanese Weevil | Pseudocneorhinus bifasciatus

Figure 1: Pseudcneorhinus bifasciatus (Photo: Judy Gallagher)
California Pest Rating for
Name: Pseudocneorhinus bifasciatus Roelofs (twobanded Japanese weevil)
Synonym: Callirhopalus bifasciatus (Roelofs)
Order: Coleoptera
Family: Curculionidae
Pest Rating: A

 


PEST RATING PROFILE

Initiating Event:

Pseudocneorhinus bifasciatus is currently Q-rated.  A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:  Pseudocneorhinus bifasciatus is a stout, convex, and pear-shaped weevil with a short, blunt snout, and elytra much broader than its pronotum. It is approximately 5 mm long, and is covered with brown and grey scales that form two bands across the elytra (Thomas, 2005). The elytra are fused, and the hind wings are absent, so this weevil cannot fly. The adult weevils feed during the day on leaves.  They are easy to overlook due to their subdued brown coloration (Smith,1955).  They can cause significant damage to plants when they are abundant. This weevil is highly polyphagous and is known to feed on over 100 species of plants.  Recorded hosts include multiflora rose (Rosa multiflora), rose, azalea (Rhododendron spp.), privet (Ligustrum spp.), azalea, forsythia, geranium, hemlock, mountain laurel, lilac, strawberry, flowering dogwood, and perennial phlox.  In the northeastern United States, Pseudocneorhinus bifasciatus has one generation per year with egg laying taking place from the middle of May through October (Gyeltshen and Hodges, 2016).  Eggs are laid on fallen leaves within leaf-folds, and the edges of the leaf is then sealed by the weevil to form a “pod” (Zepp, 1978).  An egg “pod” contains one to nine eggs (Zepp, 1978).  The eggs hatch in 14 to 18 days (Allen, 1959).  The newly hatched larvae leave the “pod” and burrow into the soil. The larvae live in the soil and feed on the roots of host plants, but the extent of damage from their feeding is not well documented.  Allen (1959) found as many as 150 larvae per square foot, at depths ranging from one to nine inches, underneath infested privet hedges in New Jersey.  Larvae were found at depths ranging from one to nine inches (Allen, 1959).  These larvae started to pupate by early May, and adults emerged in late June and early July (Allen, 1959).  Although the weevil has a wide range of hosts, the Rosaceae family may be particularly vulnerable to this pest.  For example, one study showed that this weevil had the greatest reproductive success when adults were fed on foliage of Rosa multiflora Thunb. (Rosaceae) compared with four other species of other ornamental plants in three other families (Maier, 1983).  Another study found larvae of this weevil to cause damage to the roots of peach trees in Georgia (peaches are in the family Rosaceae; Cottrell and Horton, 2013).

Worldwide Distribution:  Pseudocneorhinus bifasciatus is native to China, Japan, Korea, Mongolia, and eastern Siberia.  It has been established on the east coast of the United States for more than 100 years and it is currently known to occur there from New England south to northern Florida and west to Illinois and Indiana (Thomas, 2005).  It has also been found in Oklahoma, although the distribution of the weevil in that state is unknown (Rebek and Grantham, 2008).

Official Control: Pseudocneorhinus bifasciatus is not known to be under official control.

California Distribution:  Pseudocneorhinus bifasciatus is not known to be present in California (Symbiota Collections of Arthropods Network).

California Interceptions:  Pseudocneorhinus bifasciatus was intercepted in a West Sacramento postal facility in an out-of-state shipment of crabapple in August 2015 (CDFA, 2015).

The risk Pseudocneorhinus bifasciatus would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: The weevil’s distribution extends from New England to Florida, indicating a wide temperature tolerance. It is not known if there are other climate limitations. This weevil is highly polyphagous, and it is presumed that suitable host plants are present throughout much of California.  Therefore, it receives a High (3) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Pseudocneorhinus bifasciatus, has been reported to feed on more than 100 species of plants in more than 25 families. It is primarily known for damaging ornamental plants, but it has been found to also damage vegetable and field crops (Day, 2014; Thomas, 2005). Therefore, it receives a High (3) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Pseudocneorhinus bifasciatus reproduces parthogenetically (Takenouchi et al, 1983).  This high reproductive capacity is offset by a limited dispersal potential.  The weevil’s wing covers are fused rendering it incapable of flight.  It could be dispersed through the movement of infected nursery stock (Wheeler and Boyd, 2005).  Therefore, it receives a Medium (2) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: As described previously, Pseudocneorhinus bifasciatus has a very wide range of hosts including field and vegetable crops (Thomas, 2005; Day, 2014).  The weevil has the potential of lowering the value of nursery crops and the yield of agricultural crops.  Therefore, it receives a Medium (2) in this category.

Economic Impact:  A, B

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: If Pseudocneorhinus bifasciatus became established in California, it could attack a wide variety of ornamental and garden plants. The impact of the infestation could trigger treatment programs.  This pest may also pose a threat to endangered species such as Rosa minutifolia and Potentilla hickmannii.  Therefore, this beetle receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: B, D, E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Pseudocneorhinus bifasciatus: High (13)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Pseudocneorhinus bifasciatus is not known to occur in California.  It receives a Not established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (13)

Uncertainty:

There is significant uncertainty regarding the suitability of the California climate and the ability of Pseudocneorhinus bifasciatus to become established in California. It apparently can tolerate a wide range of temperatures, as shown by its broad distribution in the eastern United States, but the suitability of the drier climate of California is unknown.  The weevil has been found in a relatively dry western state (Oklahoma), but the extent of its incursion there is unknown (Rebek and Grantham, 2008).

Conclusion and Rating Justification:

Pseudocneorhinus bifasciatus is a weevil that attacks a wide range of hosts.  If it can become established in California, it poses an economic and environmental threat to the state.  For these reasons, an “A” rating is justified.


References:

Allen, H.W. 1957.  A Japanese weevil abundant in the Philadelphia area.  Entomological News 68: 169-174.

Allen, H.W. 1959. The Japanese weevil Pseudocneorhinus bifasciatus Roelofs. Journal of Economic Entomology 52: 586-587.

CDFA.  2015.  Detector dogs do it again!  Planting Seeds – Food & Farming News from CDFA. Accessed:  May 4, 2018  http://plantingseedsblog.cdfa.ca.gov/wordpress/?p=9310

Cottrell, T.T. and Horton, D.L.  2013.  Emergence of root-feeding weevils (Coleoptera: Curculionidae) in central Georgia peach orchards.  Journal of Entomological Sciences 48: 184-194.

Day, E.R.  2014.  Japanese Weevil.  444-624 (ENTO-98NP).  VCE Publications. Virginia Cooperative Extension, Virginia Tech, and Virginia State University.

Gayeltshen, J. and Hodges, A.  2016.  Twobanded Japanese Weevil, Pseudocneorhinus bifasciatus Roelofs (Insecta: Coleoptera: Curculionidae).  EENY361.  Entomology and Nematology Department, University of Florida; IFAS Extension.

Maier, C.T.  1983.  Influence of host plants on the reproductive success of the parthenogenetic Two-Banded Japanese Weevil, Callirhopalus bifasciatus (Roelofs) (Coleoptera: Curculionidae).  Environmental Entomology 12: 1197-1203.

Rebek, E.J., and Grantham, R.  2008.  New Oklahoma insect pest of woody ornamentals: Japanese weevil.  Plant Disease and Insect Advisory.  Oklahoma State University Extension. Vol. 7, No. 33.

Smith, F.F. 1955. Scientific Notes: Notes on the biology and control of Pseudocneorhinus bifasciatus. Journal of Economic Entomology 48:628-629.

Symbiota Collections of Arthropods Network.  Accessed May 22, 2018. http://scan-bugs.org/portal/taxa/index.php?taxon=Pseudocneorhinus+bifasciatus&formsubmit=Search+Terms

Takenouchi, Y., Suomalainen, E., Saura, A., and Lokki, J.  1983.  Genetic polymorphism and evolution in parthenogenetic animals.  XII.  Observations on Japanese polyploid Curculionidae (Coleoptera).  Japanese Journal of Genetics 58:153-157.

Thomas, M.C. 2005. Pest Alert: The twobanded Japanese weevil (Pseudocneorhinus bifasciatus Roelofs), an invasive pest new to Florida (Coleoptera: Curculionidae).  Florida Department of Agriculture and Consumer Services.  DACS-P-01673.  Accessed: May 2, 2018.  https://www.freshfromflorida.com/content/download/66258/1600078/Pseudocneorhinus_bifasciatus,_The_two_banded_Japanese_Weevil.pdf

Wheeler, A.G., Jr., and Boyd, D.W., Jr. 2005. Distribution of an invasive weevil, Pseudocneorhinus bifasciatus Roelofs, in the southeastern United States. Journal of

Entomological Science 40: 25-30.

Zepp, D.B.  1978.  Egg pod formation by Callirhopalus (subg. Pseudocneorhinus) bifasciatus (Roelofs) (Coleoptera: Curculionidae: Eremninae).  Coleopterists Bulletin 32: 311-313.

Photo: By Judy Gallagher [CC BY 2.0 (https://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons


Author:

Karen Olmstead, Environmental Scientist; California Department of Food and Agriculture; 1220 N Street, Sacramento, CA 95814; Tel. (916) 403-6879; plant.health@cdfa.gov

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA  95833; (916) 654-1211; plant.health@cdfa.gov


Comment Period:* CLOSED

7/25/18 – 9/08/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A

 


Posted by ls 

Barber Giant Mealybug | Puto barberi (Cockerell)

Alessandra Rung, Scale Insects, USDA APHIS ITP, Bugwood.org
California Pest Rating for
Barber Giant Mealybug | Puto barberi (Cockerell) 
Hemiptera: Putoidae
Pest Rating: A

PEST RATING PROFILE

Initiating Event:

Puto barberi is currently Q-rated.  A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:   Puto barberi is a common neotropical mealybug.  Immatures and adult females are covered in a powdery, white wax.  Adult females reach 4.3 mm in length.  This polyphagous mealybug has been reported to feed on 37 families of plants, including Apocynaceae, Asteraceae, Bromeliaceae, Caprifoliaceae, Caryophyllaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Lamiaceae, Lauraceae, Lomariopsidaceae, Lythraceae, Malvaceae, Nyctaginaceae, Oleaceae, Polygonaceae, Rosaceae, Rubiaceae, Rutaceae, Solanaceae, Sterculiaceae, Tamaricaceae, Thunbergiaceae, Umbelliferae, and Verbenaceae (Malumphy, 2014; Portilla and Cardona, 2004).  It can be found on the foliage, fruit, and roots of plants (García Morales et al., 2016).  It is a well-known pest of coffee; it feeds underground on the roots of that plant and has been reported to be the most significant mealybug pest of coffee in Colombia (Villegas-García and Benavides-Machado, 2011).  The underground lifestyle makes insecticidal control challenging (Builes et al., 2014).  It has also been reported from avocado, citrus, and strawberries, but no information was found regarding the damage inflicted (if any) (García et al., 2013; Kondo and Muñoz, 2016; Williams and Granara de Willink, 1992).  Besides removing the phloem when feeding, an additional impact on plants that has been reported is the excretion of honeydew and resulting growth of mold on the plant.  In addition to impacting the appearance of the plant, mold can reduce photosynthesis (Malumphy, 2010).  Puto barberi has been shown to be parthenogenetic under laboratory conditions.  It is not known if sexual reproduction occurs in the field (García et al., 2013).

Worldwide Distribution:  Puto barberi appears to be restricted in distribution to the Neotropics, where it is apparently native, and the Canary Islands, where it is presumably introduced (Gavrilov-Zimin and Danzig, 2015; Malumphy, 2014).  It is widespread in the Caribbean, including Antigua and Barbuda, Bahamas, Dominican Republic, Jamaica, Puerto Rico, and Trinidad and Tobago (Portilla and Cardona, 2004; Miller, 2005; Williams and Granara de Willink, 1992).  It is also reported from South America (Colombia and Venezuela) (Kondo et al., 2008; Urtiaga, 2017).

Official Control: Puto barberi is considered reportable by USDA-APHIS (USDA-APHIS).

California Distribution:  Puto barberi is not known to be present in California (Symbiota Collections of Arthropods Network).

California Interceptions:  Puto barberi was intercepted on cut flowers of Alpinia sp. from Florida in 2018 (California Department of Food and Agriculture).

The risk Puto barberi would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Puto barberi is reported to attack a wide variety of plants, and it is likely that it could find suitable host plants in much of California.  Climate, however, is expected to limit the potential distribution of this species in California.  This mealybug appears to currently be limited to areas with a tropical or (possibly) subtropical climate; this includes the areas it has been introduced to in the Canary Islands.  It does not appear to have spread into the southeastern United States or Mexico or further south than Colombia or Venezuela in South America, which supports the idea that a tropical/subtropical climate is required by this species.  If this mealybug was able to become established in California, it would likely be limited to a very small area, possibly on the coast in the southern part of the state.  Therefore, Puto barberi receives a Low (1) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: As stated above, Puto barberi is reported to feed on at least 37 families of plants.  Therefore, it receives a High (3) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Reproductive and Dispersal Potential: Puto barberi has been shown to be parthenogenetic, which means a single female can establish a population.  Immatures and adult females could be transported on infested plant material.  Therefore, it receives a High (3) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Coffee is now being grown in several California counties, including San Diego and Santa Barbara (Kan-Rice, 2017).  Puto barberi is considered a significant pest of coffee.  It is possible that if this mealybug became established in southern California, it could have an impact on coffee, including lowering yield and increasing production costs.  As a highly polyphagous mealybug, it could attack other crops as well.  The presence of this pest in California could result in quarantines because it is considered Reportable by the USDA.  Therefore, it receives a High (3) in this category.

Economic Impact:  A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Puto barberi is reported to attack a wide variety of plants. If this species became established in California, it could trigger treatments in cropland or gardens.  Therefore, it receives a Medium (2) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact:  D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Puto barberi: Medium (12)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Puto barberi is not known to occur in California.  It receives a Not established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: Medium (12)

Uncertainty:

The most significant uncertainty involved with this proposal is the climatic suitability of California for Puto barberi.  The known distribution of this species strongly suggests that it might not be capable of becoming established in climates other than tropical/subtropical.  Even if this mealybug is able to become established in California, there is uncertainty regarding its ability to impact crops in California.  Information was not found regarding impacts of this species on any crops other than coffee.

Conclusion and Rating Justification:

Puto barberi is a polyphagous mealybug that is a recognized pest.  If it was able to become established in California, it could attack a variety of crops and ornamental plants.  It is not known to be present in California.  For these reasons, an “A” rating is justified.


References:

Builes, V. H. R., Bustamante, Á. L. G., Machado, P. B., Chaure, L. M. C., Palacio, Z. N. G., Khalajabadi, S. S., and Osorio, H. G.  2014.  Recomendaciones para la reducción del riesgo en la caficultura de Colombia ante un evento climático de El Niño.  Gerencia Técnica 445:1-12.

California Department of Food and Agriculture.  2018.  Pest and damage record database.  Accessed July 3, 2018: https://pdr.cdfa.ca.gov/PDR/pdrmainmenu.aspx

García, C. V., Peña M., H. D., Muñoz H., R. I., Martínez C., H. E., and Machado, P. B.  2013.  Aspectos del ciclo de vida de Puto barberi Cockerell (Hemiptera: Putoidae).  Revista Cenicafé 64:31-41.

García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y., and Hardy, N. B. 2016.  ScaleNet: A literature-based model of scale insect biology and systematics.  Accessed July 2, 2018: http://scalenet.info

Gavrilov-Zimon, I. A. and Danzig, E. M.  2015.  Some additions to the mealybug fauna (Homoptera: Coccinea: Pseudococcidae) of the Canary Islands.  Zoosystematica Rossica 24:94-98.

Kan-Rice, P.  2017.  California’s nascent coffee industry to hold inaugural summit.  Accessed July 3, 2018: http://ucfoodobserver.com/2017/12/12/californias-nascent-coffee-industry-to-hold-inaugural-summit/

Kondo, T. and Muñoz, J. A.  2016.  Scale insects (Hemiptera: Coccoidea) associated with avocado crop, Persea americana Mill. (Lauraceae) in Valle del Cauca and neighboring departments of Colombia.  Insecta Mundi 0465:1-24.

Kondo, T., Portilla, A. A. R., and Navarro, E. V. V.  2008.  Updated list of mealybugs and putoids from Colombia (Hemiptera: Pseudococcidae and Putoidae).  Boletín del Museo de Entomología de la Universidad del Valle 9:29-53.

Malumphy, C.  2010.  Barber giant mealybug Puto barberi (Cockerell) (Hemiptera: Pseudococcidae), a neotropical pest of ornamental plants established in Gran Canaria, Spain.  Entomologist’s Monthly Magazine 146:21-25.

Malumphy, C.  2014.  An annotated checklist of scale insects (Hemiptera: Coccoidea) of Saint Lucia, Lesser Antilles.  Zootaxa 3846:069-086.

Miller, D. R.  2005.  Selected scale insect groups (Hemiptera: Coccoidea) in the southern region of the United States.  Florida Entomologist 88:482-501.

Portilla, A. A. R. and Cardona, F. J. S.  2004.  Coccoidea de Colombia, con énfasis en las cochinillas harinosas (Hemiptera: Pseucococcidae).  Revista Facultad Nacional de Agronomía Medellín 57:2383-2412.

Symbiota Collections of Arthropods Network.  Accessed July 2, 2018: http://scan1.acis.ufl.edu

Urtiaga, R.  2017.  Catálogo de insectos y acaros en plantas de Venezuela.  Accessed June 29, 2018: https://www.researchgate.net/publication/315147441_Catalogo_de_Insectos_y_Acaros_en_Plantas_de_Venezuela

USDA-APHIS.  U.S. regulated plant pest table.  Accessed July 2, 2018: https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-information/rppl/rppl-table

Villegas-García, C. and Benavides-Machado, P.  2011.  Identificación de cochinillas harinosas en las raíces de café en departamentos cafeteros de Colombia.  Revista Cenicafé 62:48-55.

Williams, D. J. and Granara de Willink, M. C.  1992.  Mealybugs of Central and South America.  CAB International, London, England.


Author:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741; plant.health[@]cdfa.ca.gov.

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

7/24/18 – 9/07/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A


Posted by ls