Category Archives: Hemiptera

White Prunicola Scale | Pseudaulacaspis prunicola

California Pest Rating for
Pseudaulacaspis prunicola (Maskell) | White prunicola scale
Hemiptera: Diaspididae
Pest Rating: A

PEST RATING PROFILE

Initiating Event:

In 2018, this scale was found in Solano County on Ligustrum sp. bonsai that had been purchased in Fresno County.  This scale currently has a Q-rating.  A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:  Pseudaulacaspis prunicola is a polyphagous scale that is reported to feed on plants in 15 families.  Among the recorded hosts are fruit and ornamental trees, including Carica, Malus, and Prunus species (Agnello et al., 2015; Follett, 2000; Miller and Davidson, 2005).  Death of trees can result from feeding by this scale (Miller and Davidson, 2005).

There is some uncertainty regarding the species identity of P. prunicola.  This scale was considered a synonym of P. pentagona until 1980.  Kreiter et al. (1999) reported individuals in a single population that could be identified morphologically as either species.  Pseudaulacaspis pentagona is an A-rated (by CDFA) pest that is highly polyphagous and is reported to cause damage to a wide variety of plants, including peaches in the southeastern United States and papaya in Hawaii (Branscome, 1999; Follett, 2000).

Worldwide Distribution:  Pseudaulacaspis prunicola is thought to be native to temperate China or Japan (Miller and Davidson, 2005).  It has been introduced to Europe, the eastern United States, and Hawaii.  In the eastern United States, it is reported from Florida north to Massachusetts (Miller and Davidson, 2005).

Official Control: Pseudaulacaspis prunicola does not appear to be under official control in any country.  However, P. pentagona, which has been considered by some to be a senior synonym of P. prunicola, is a regulated pest in some countries (EPPO Global Database, 2018).

California Distribution:  Although P. prunicola has been collected at times in the state, this species does not appear to be established in California.

California Interceptions:  The P. prunicola found on Ligustrum sp. bonsai in Solano County in 2018 represents the only interception of this species in California.

The risk Pseudaulacaspis prunicola would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Pseudaulacaspis prunicola has proven itself capable of becoming established in a variety of climates, and it is highly polyphagous.  It could probably establish a widespread distribution in California.  Therefore, prunicola receives a High (3) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Pseudaulacaspis prunicola is reported to feed on plants in at least 15 families.  Therefore, it receives a High (3) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Reproductive and Dispersal Potential: Pseudaulacaspis prunicola is likely to be transported via movement of infested plants.  Therefore, it receives a Medium (2) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Pseudaulacaspis prunicola is reported to attack fruit and ornamental trees.  Feeding damage is reported to cause death of trees.  Infestations of this scale could lower crop yield and increase production costs.  Therefore, it receives a Medium (2) in this category.

Economic Impact: A, B

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: This scale is reported to kill ornamental trees.  Infestations could trigger treatment programs.  Therefore, it receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: D, E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Pseudaulacaspis prunicola: High (13)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Pseudaulacaspis prunicola is not known to be present in California.  It receives a Not Established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (13)

Uncertainty:

There is taxonomic uncertainty regarding P. prunicola and P. pentagona; they have been considered to be the same species.  As P. pentagona is A-rated and is also not known to be present in California, the main implication of this uncertainty appears to be that the potential impact of P. prunicola could be greater than that considered in this PRP because there are additional hosts and additional climatic niche space reported for P. pentagona.

Conclusion and Rating Justification:

Pseudaulacaspis prunicola is a highly polyphagous scale that is not known to be present in California.  It has the potential to cause economic and environmental impacts in the state if it was to become established.  For these reasons, an “A” rating is justified.


References:

Agnello, A., Jentsch, P., and Kain, D.  2015.  Prebloom problemas.  Scaffolds Fruit Journal 24:1-3.

Branscome, D.  1999.  Pseudaulacaspis pentagona.  Accessed October 2, 2018: http://entnemdept.ufl.edu/creatures/orn/scales/white_peach_scale.htm

California Department of Food and Agriculture.  Pest and damage record database.  Accessed September 28, 2018:
https://pdr.cdfa.ca.gov/PDR/pdrmainmenu.aspx

EPPO Global Database.  2018.  Accessed October 4, 2018: https://gd.eppo.int/

Follett, P. A.  2000.  Arthropod pests of papaya in Hawaii.  Chronica Horticulturae 40:7-10.

Kreiter, P., Panis, A., and Tourniaire, R.  1999.  Variabilite morphologique chez Pseudaulacaspis pentagona Targioni Tozzetti dans une population du sud-est de la France (Hemiptera: Diaspididae).  Annales de la Société Entomologique de France 35:33-36.

Symbiota Collections of Arthropods Network.  Accessed September 27, 2018:
http://scan1.acis.ufl.edu

Miller, D. R. and Davidson, J. A.  2005.  Armored scale insect pests of trees and shrubs (Hemiptera: Diaspididae).  Cornell University Press, Ithaca, NY.


Responsible Party:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

12/6/2018 – 1/20/2019


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A


Posted by ls 

Harrisia Cactus Mealybug | Hypogeococcus pungens

California Pest Rating for
Hypogeococcus pungens Granara de Willink | Harrisia cactus mealybug
Hemiptera: Pseudococcidae
Pest Rating: A

PEST RATING PROFILE

Initiating Event:

An infestation of Hypogeococcus pungens was discovered on cacti in a recreation area in Orange County in September 2018.  This mealybug currently has a Q-rating.  A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:   Hypogeococcus pungens is a mealybug that has been reported to attack at least six genera of cacti as well as plants in the families Amaranthaceae, Polygonaceae, and Portulaceae (Hodges, 2009; Zimmermann et al., 2010).  Cactus feeding is concentrated on portions of the plant that are actively growing.  This results in distorted growth, including curling branches and growth of new, deformed branches that are sometimes referred to as galls (Le Quay-Velázquez et al., 2015).  Death can take years, especially in older plants, but feeding has an immediate impact of fruit production because the mealybugs are concentrated on developing flowers.  Therefore, this mealybug can have a severe impact on cactus reproduction (Patterson et al., 2011).

Natural dispersal appears to be limited but may include wind dispersal in the first instar (Zimmermann et al., 2010).  Movement of plants is probably the most effective means of spread of this mealybug.

In the 1970s and 1980s, this mealybug was introduced to Australia and South Africa as part of biological control programs targeting introduced cacti, including Harrisia spp. This mealybug was credited as an effective biological control agent, helping to clear cacti from thousands of hectares.

Aguirre et al. (2016) provided evidence that more than one species may be currently identified as H. pungens.  Specimens collected from the type host plant (Amaranthaceae) did not produce viable offspring or did not survive at all on cacti.  The cactus-feeding H. pungens introduced to Australia for biological control of cacti had been collected from cacti in Argentina.  Significantly, the H. pungens in Australia have not been found on Amaranthaceae, even though this family of plants is common in Australia.  The mealybug in Florida rarely attacks cacti but it is common on Alternanthera (Polygonaceae) and Portulaca (Portulaceae) species.  In addition, the Amaranthaceae-feeding H. pungens are reported to be parthenogenetic, whereas the cactus-feeding mealybug is not.  This evidence suggests there are likely at least two species currently recognized as H. pungens; one that feeds on cacti (native to South America and introduced to Australia, South Africa, the Caribbean, and possibly California) and one that feeds on Amaranthaceae and other plant families (also native to South America and introduced to Florida).

In addition, H. pungens has been misidentified as H. festerianus in the past (CABI, 2018).

In areas with native cacti but where H. pungens is not native to, there is concern that the mealybug could have an impact on native cacti.  Hypogeococcus pungens was reported to cause severe damage to native cacti in Puerto Rico, including reducing the density of cactus stems (Weaver, 2011).

Worldwide Distribution:  Hypogeococcus pungens is native to South America (northern Argentina, western Brazil, Paraguay, and Peru).  It has been introduced to Australia, the Caribbean (including the Dominican Republic and Puerto Rico), Europe (France, Greece, and Italy), South Africa, and the United States (Florida and Hawaii) (German-Ramirez et al., 2014; Hodges, 2009; Milonas et al., 2008; Pellizzari and Sacco, 2010; Segarra-Carmona et al., 2010).  As of 2009, it was reported from 26 counties in Florida (Hodges, 2009).

Official Control: Hypogeococcus pungens is considered Reportable by the USDA (USDA-APHIS).

California Distribution:  Hypogeococcus pungens was found in California in Beverly Hills in 2010, 2012, 2014, and 2018 and in a recreation area in Orange County in 2018.  Both of these infestations are now under eradication, and this species is not known to be present anywhere else in the state.

California Interceptions:  Hypogeococcus pungens was found on cacti at one residence in Beverly Hills (in 2010, 2012, 2014, and 2018), in a recreation area in Orange County in 2018, and in nurseries in Riverside, Orange, San Diego, and San Mateo County in 2004, 2011, 2012, and 2018.  It was intercepted on alternanthera and ludwigia plants from Florida in 2002 and 2004 (see comment on host breadth and taxonomic uncertainty, above).

The risk Hypogeococcus pungens would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Hypogeococcus pungens has been reported from areas that vary in climate from temperate to semi-arid to tropical.  It has been reported to feed on plants in four families.  It could possibly establish a widespread distribution in California.  Therefore, pungens receives a High (3) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Four plant families are reported to be attacked by mealybugs that were identified as pungens.  Although it is possible that multiple species with different feeding habits are being lumped together in this PRP (see Background, above, and Uncertainty, below), it is necessary to consider characteristics of what has been (and are likely to be) identified as H. pungens.  Therefore, H. pungens receives a Medium (2) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Reproductive and Dispersal Potential: Some pungens are reported to be parthenogenetic, but see Background, above.  Natural dispersal ability appears to be limited, with wind-dispersal of first instar nymphs being reported as likely.  Movement of infested cactus plants is another likely mode of dispersal.  Therefore, it receives a Medium (2) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Hypogeococcus pungens is likely to infest cacti in nurseries if it became established in California.  This could lead to higher costs of production.  Additionally, the presence of this mealybug could lead to a loss in cactus markets, as this pest threatens native cacti in other countries, including Mexico.  Therefore, it receives a Medium (2) in this category.

Economic Impact:  B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C.   The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: There are 38 native cacti in California, including 8 endemic species (Jepson Herbarium, 2018), that could be threatened by this mealybug, including the rare golden-spined cereus (Bergerocactus emoryi (Engelm.) Britton & Rose) and the San Diego barrel cactus (Ferocactus viridescens (Torr. & A. Gray) Britton & Rose). Infestations of this mealybug could trigger treatments and could impact ornamental cactus plantings.  Therefore, it receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: B, D, E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Hypogeococcus pungens: Medium (12)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Hypogeococcus pungens is not known to be established in California.  It receives a Not established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: Medium (12)

Uncertainty:

There is significant uncertainty regarding the identity of the mealybugs identified as H. pungens.  As described in the Background (above), there may be at least two species that are currently identified as H. pungens; one that feeds on cacti and one that feeds on other plants, including Amaranthaceae.  This makes it difficult to extrapolate impacts of H. pungens observed in other places to California.  For example, H. pungens is reported to be widely distributed in Florida, but this does not appear to be the cactus-feeding form.  In this PRP, characteristics and possible impacts of the mealybugs identified as H. pungens were considered because, in the absence of further systematic work on these mealybugs, they are likely to be similarly identified as H. pungens if intercepted in California.

Conclusion and Rating Justification:

Hypogeococcus pungens or a cryptic species that is currently identified as H. pungens attacks cacti and poses a threat to cacti in California, both rare, native species as well as those cultivated as ornamentals in nurseries.  Besides the infestations that are under eradication, this mealybug is not known to be established in California.  For these reasons, an “A” rating is justified.


References:

Aguirre, M. B., Diaz-Soltero, H., Claps, L. E., Saracho Bottero, A., Triapitsyn, S., Hasson, E., and Logarzo, G. A.  2016.  Studies on the biology of Hypogeococcus pungens (sensu stricto) (Hemiptera: Pseudococcidae) in Argentina to aid the identification of the mealybug pest of Cactaceae in Puerto Rico.  Journal of Insect Science 16:1-7.

California Department of Food and Agriculture.  Pest and damage record database.  Accessed October 5, 2018: https://pdr.cdfa.ca.gov/PDR/pdrmainmenu.aspx

CABI.  2018. Invasive Species Compendium. Hypogeococcus pungens (cactus mealybug) datasheet.  Accessed October 5, 2018:  https://www.cabi.org/isc/datasheet/110614

German-Ramirez, E., Kairo, M. T. K., Stocks, I., Haseeb, M., and Serra, C. A.  2014.  New record of Hypogeococcus pungens (Hemiptera: Pseudococcidae) in the Dominican Republic with comments on specific characters.  Florida Entomologist 97:320-321.

Hodges, A.  2009.  Hypogeococcus pungens Granara de Willink (Insects: Hemiptera: Pseudococcidae). Accessed September 24, 2018: http://entnemdept.ufl.edu/creatures/orn/mealybug/hypogeococcus_pungens.htm

Jepson Herbarium.  2018.  Jepson eFLora.  Accessed October 5, 2018:
http://ucjeps.berkeley.edu/IJM_stats.html.

Le Quay-Velázquez, G., Ciomperlik, M., and Rodrigues, J. C. V.  2015.  Gall formation on the endangered cactus, Leptocereus quadricostatus caused by the invasive mealybug, Hypogeococcus pungens (Hemiptera: Pseudococcidae).  Proceedings of the Caribbean Food Crops Society 51:174-180.

Milonas, P. G., Kozár, F., and Kontodimas, D. C.  2008.  List of scale insects of Greece.  pp. 143-147 in Branco M., Franco J.C., and Hodgson C. (eds.), Proceedings of the XI International Symposium on Scale Insect Studies.   ISA Press, Lisbon, Portugal.

Paterson, I. D., Hoffmann, J. H., Klein, H., Mathenge, C. W., Neser, S., and Zimmermann, H. G.  2011.  Biological control of Cactaceae in South Africa 19:230-246.

Pellizzari, G., and Sacco, M.  2010.  Le cocciniglie delle piante ornamentali in Liguria.  Protezione delle Colture 4:27-36.

Segarra-Carmona, A. E., Ramírez-Lluch, A., Cabrera-Asencio, I., and Jiménez-López, A. N.  2010.  First report of a new invasive mealybug, the Harrisia cactus Hypogeococcus pungens (Hemiptera: Pseudococcidae).  The Journal of Agriculture of the University of Puerto Rico 94:183-187.

USDA-APHIS.  U.S. regulated plant pest table.  Accessed September 26, 2018:
https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-information/rppl/rppl-table

Weaver, P. L.  2011.  Early recovery of subtropical dry forest in south-western Puerto Rico.  Bois et Forêts de Tropiques 310:12-23.

Zimmermann, H. G., Pérez, M., Cuen, S., Mandujano, M. C., and Golubov, J.  2010.  The South American mealybug that threatens North American cacti.  Cactus and Succulent Journal 82:105-107.


Responsible Party:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

12/6/2018 – 1/20/2019


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A


Posted by ls 

Tea Scale of Camellia | Fiorinia phantasma

California Pest Rating for
Fiorinia phantasma Cockerell & Robinson: tea scale of camellia
Hemiptera: Diaspididae
Pest Rating: A

PEST RATING PROFILE

Initiating Event:

In March 2018, an infestation of Fiorinia phantasma was discovered on 27 roadside palm trees in Miami, Florida (Ahmad and Miller, 2018). This species is already present in Hawaii where it is a significant pest of ornamentals. During May 2018, Fiorinia phantasma was intercepted on a shipment of unidentified leaves from American Samoa.  This species has a Q rating. A pest rating proposal is required to assign a permanent rating to this species.

History & Status:

BackgroundFiorinia phantasma is a polyphagous armored scale and is considered a significant pest of nursery plants particularly ornamental palms (Arecaceae). It has been transported worldwide by movement of live nursery plants (Brooks, 2012 and Watson et-al., 2015). Female scales inconsistently show red stripes, running the width of the scale covering. Male and females can be found intermingled on the undersides of leaves. Eggs are large and can reach more than 1/5 of the body size of females. Crawlers begin to colonize the top side of leaves when populations reach high densities (Garcia and Hara, 2011).

Fiorinia phantasma causes yellow blotches on the upper leaf surface of host plants. Intense feeding damage is caused due to heavy infestations, resulting in leaf drop. In Hawaii, this scale impacts local nursery and landscape industry and poses an additional quarantine problem for exporters (Garcia and Hara, 2011).

In addition to palms, Fiorinia phantasma also feeds on shower tree (Cassia spp.), lobster claw (Heliconia caribaea), weeping fig (Ficus benjamina), naio (Myoporum sandwichense), mock orange (Murraya peniculata), pittosporum (Pittosporum tobira), wax leaf privet (Ligustrum japonicum), and bread fruit (Artocarpus altilis) (NPDN- Pacific pest detector news).

Worldwide Distribution: Fiorinia phantasma was first found in the Philippine islands in 1915. It is currently known in American Samoa, France, French Polynesia, Grenada, Guam, Hong Kong, Indonesia, Malaysia, Maldives, Nauru, Netherlands, New Caledonia, Papua New Guinea, Reunion, Saint Martin and St. Barthelemy, Singapore, Solomon Islands, Taiwan, Thailand and Vietnam (Watson et- al., 2015).

The first report of F. phantasma from the continental Unites States was recorded from a Canary island date palm on March 1, 2018 in Miami- Dade county, Florida. Heavy infestations have also been reported on palms in Hawaii (Garcia and Hara 2011 & Watson et-al., 2015).

Official Control: Fiorinia phantasma is listed as a harmful organism in the Republic of Korea (USDA PCIT).

California DistributionFiorinia phantasma is not present in the natural environment of California.

California Interceptions: Fiorinia phantasma has been intercepted 11 times by CDFA between 2010 and 2018 through regulatory pathways mainly through high risk pest exclusion activities and dog program inspections (CDFA PDR Database).

The risk Fiorinia phantasma (tea scale of camellia) would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Tropical and subtropical climate in the south coast of California is suitable for growing many palm trees. Other hosts plants including oleander, plumeria, cassia, weeping fig, pittosporum, podocarpus and murraya are grown throughout California. Fiorinia phantasma is likely to survive where these host plants are grown. It receives a High (3) in this category.

Evaluate if the pest would have suitable hosts and climate to establish in California.  Score:

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Fiorinina phantasma is known to feed on a wide range of host plants in 44 genera in 24 families. It has preference for Arecaceae (palm trees). Other families include Araceae, Apocynaceae, Calophyllaceae, Commilinaceae, Cycadaceae, Euphorbiaceae, Fabaceae, Heliconiacaea, Lauracaea, Malvaceae, Melicaceae, Moraceae, Oleaceae, Orchidaceae, Pandanaceae, Pittosporaceae, Poaceae, Rutaceae, Sapindaceae, Scrophulariaceae, Strelitziaceae (García Morales et al., 2016). It receives a High (3) in this category.

Evaluate the host range of the pest. Score:

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

High (3) has a wide host range.

3) Pest Dispersal Potential: Fiorinina phantasma remains active throughout the year in warmer climates.  Female lays approximately 10-15 eggs under its armor. Crawlers hatch in 10 days. The infestation actively spreads in crawler phase. Life cycle is completed in 1.5 – 2 months. It is spread in Hawaii by inter- island transport of nursery plants (Garcia and Hara, 2011, Watson et al., 2015). In California, if Fiorinia phantasma gets introduced and established, it is likely to move long distances through movement of infested nursery and landscape plants especially palm trees. It receives a High (3) in this category.

Evaluate the natural and artificial dispersal potential of the pest. Score:

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Fiorinina phantasma is known to cause serious damage on areca palms in landscapes. Feeding by this species results in yellowing of leaves, leaf drop, loss of plant vigor, stunting of the host and even death of the plant. It is reported to have infested 6000 palm trees in the republic of Maldives (Watson et-al., 2015). If this species is introduced and gets established in palm growing and landscapes of south coast, it is likely to impact trade, including palms grown in nurseries. Possible use of horticultural oils and systemic insecticides for its control can increase production costs (García Morales et al., 2016). It receives a High (3) in this category.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: The establishment of Fiorinina phantasma in California is likely to impact nursery and landscape plants as it can spread through transport of nursery plants. This species is not expected to lower biodiversity, change ecosystems and affect any threatened or endangered species. Since camellias, palms and other hosts are planted in home gardens, infestations would likely trigger chemical treatments by homeowners. It receives a Medium (2) in this category.

Evaluate the environmental impacts of the pest on California using the following criterion:

Environmental Impact: D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact: 2

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Fiorinia phantasma (tea scale of camellia): High (14)

Add up the total score and include it here.

-Low = 5-8 points

-Medium = 9-12 points

-High = 13-15 points

6) Post Entry Distribution and Survey Information: Fiorinia phantasma has not been detected in the natural environment of California. It receives Not established (0) in this category

Evaluate the known distribution in California. Only official records of specimens identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Not established (0) Pest never detected in California or known only from incursions.

-Low (-1) Pest has a localized distribution in California or is established in one suitable climate/host area (region).

Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (14)

Uncertainty:

Fiorinia phantasma has been intercepted by CDFA in shipments of leucodendron, Psidium guajava, Annona muricata, boxwood and podocarpus. There are many nurseries in southern and central California that specialize in these hosts and different kinds of palm trees, the main hosts of this scale. Therefore, nursery and landscape plants may potentially be significantly impacted. There have not been any recent formal surveys of nurseries and palm growing areas for the presence of this species. It is possible that this scale could be present in some parts of California.

Conclusion and Rating Justification:

Fiorinia phantasma has never been found in the environment of California. Since there are several of its hosts plants being grown and propagated in CA, it would likely have significant economic and environmental impacts if this scale become established in California. An “A” rating is justified.


References:

Ahmad, M, and Miller, D. 2018. First U.S. Continental Record of Fiorinia phantasma Cockerell & Robinson (Hemiptera: Diaspididae), Phantasma Scale, Potential Pest of Palms and Ornamentals Plants. Pest Alert. Publication: FDACS-P-01880. Florida Department of Agriculture and Consumer resources. Division of Plant Industry. Accessed 8/3/2018  https://www.freshfromflorida.com/content/download/79840/2332158/Pest_Alert_-_Fiorinia_phantasma.pdf

Brooks, F. 2012. Pacific Pest Detector News. A Quarterly Newsletter for First Detectors. March- May 2012, Number 9. National Plant Diagnostics Network. Accessed 8/6/2018  https://www.npdn.org/system/files/WPDN%20PacPestDetectNews_Mar-May2012.pdf

Cockerell, T. D. A., and Robinson E.  1915. — Descriptions and records of Coccidae. Bulletin of the American Museum of Natural History 34: 105–113

Garcia, J., and Hara, A. 2011. Fiorinia phantasma Cockerell & Robinson (Hemiptera: Diaspididae). New Pest Advisory, Plant Pest Control Branch, Division of Plant Industry, Department of Agriculture, State of Hawaii 1: 1-2. Accessed 8/6/2018 https://hdoa.hawaii.gov/pi/files/2013/01/Fiorinia-phantasma-NPA.pdf

Morales, G.M.  Denno, B.D., Miller, D.R., Miller, G.L., Ben-Dov, Y., and Hardy, N.B. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. Database. Accessed 8/3/2018 http://scalenet.info.  http://scalenet.info/catalogue/Fiorinia%20phantasma/

Pest and Damage Record Database. 2018. Fiorinia phantasma. Plant Health and Pest Prevention Services. California Department of Food and Agriculture. Accessed 8/2/2018  http://phpps.cdfa.ca.gov/user/frmLogon2.asp

USDA Phytosanitary Certificate Issuance & Tracking System (PCIT) Phytosanitary Export Database (PExD). Harmful organism report: Fiorinia phantasma.  Accessed: 8/2/2018  https://pcit.aphis.usda.gov/pcit/

Watson, G.W., Williams, D.J., and Miller, D.R. 2015. The identity and distribution of Fiorinia phantasma (Cockerell & Robinson) (Hemiptera: Coccomorpha: Diaspididae), with a new synonym. Zootaxa 4048: 291-300.


Author:

Raj Randhawa, 1220 ‘N’ Street, Room 221, Sacramento CA 95814, (916) 403-6617, raj.randhawa@cdfa.ca.gov


Responsible Party:

Kyle Beucke, 1220 ‘N’ Street, Room 221, Sacramento CA 95814, (916) 654-1211, plant.health[@] cdfa.ca.gov.


Comment Period:*CLOSED

11/26/2018 – 1/10/2019


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating:  A


Posted by ls 

Tropical Palm Scale | Hemiberlesia palmae (Cockerell)

California Pest Rating for
Hemiberlesia palmae (Cockerell): Tropical palm scale
Hemiptera: Diaspididae
Pest Rating: A

 


PEST RATING PROFILE

Initiating Event:

A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:   Hemiberlesia palmae is a widely-distributed armored scale.  This highly polyphagous species has been reported to feed on plants in at least 92 genera in 53 families.  Reported hosts include avocado, banana, bromeliads, cactus, citrus, coffee, mango, olive, palms (including coconut), and at least one species of fern (Agricultural Research Service, 1969; García Morales et al., 2016; Kondo and Muñoz, 2016; McKenzie, 1956; Santos and Wolff, 2015; Sepúlveda et al., 2010; Thuy et al., 2011).  Although it is a widespread species and feeds on many economically-important plants, no information was found suggesting that it is a significant pest (Dekle, 1976; Granara De Willink and Claps, 2003; Nuñez, 2008).  Feeding is reported to cause yellow spots on leaves (Schmutterer, 1971).  Hemiberlesia palmae is reported to be parthenogenetic (Brown, 1965).

Worldwide Distribution:  Hemiberlesia palmae is apparently of neotropical origin, but it has been established over a wide area.  It has been reported from Europe (including Spain, Portugal, and in greenhouses in the United Kingdom), Africa (including Angola, Cameroon, Ghana, Kenya, South Africa, Tanzania, and Zaire), Asia (including China, India, Indonesia, Philippines, Thailand, and Vietnam), Australia, the Caribbean (including Antigua and Barbuda, Cuba, and Jamaica), Central America (including Guatemala and Panama), New Guinea, numerous Pacific islands, South America (including Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, and Peru), and North America (Mexico and the United States, where it is reported from Alabama, Florida, and Puerto Rico) (Amún and Claps, 2015; Ben-Dov and Sánchez-García, 2015; Culik et al., 2011; De Lotto, 1967; Franco et al., 2011; García Morales et al., 2016; Germain et al., 2008; González and Charlín, 1968; Granara De Willink and Claps, 2003; Kondo and Muñoz, 2016; Malumphy, 2012; Malumphy, 2014; Miller, 2005; Ponsonby, 1994; Szent-Ivany and Catley, 1960; Thuy et al., 2011; Vasquez et al., 2002; Waltman et al., 2016; Williams, 1973).  Some (possibly most) of the records from more temperate areas (e.g., Europe) were associated with greenhouses.

Official Control: Hemiberlesia palmae is regulated in New Zealand and is a controlled pest in Korea (Food and Agriculture Organization, 2016).

California Distribution:  Although Hemiberlesia palmae has been found at various times in nurseries in California, it is not currently known to be established in the state.

California Interceptions:  Hemiberlesia palmae has been intercepted numerous times on plant material from various origins, including Florida, Central America, and South America (California Department of Food and Agriculture).

The risk Hemiberlesia palmae would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Hemiberlesia palmae is highly polyphagous and availability of host plants is not likely to limit its potential distribution in California.  The known distribution of this species includes many tropical and subtropical areas, but some records are from desert areas as well, for example, the Azapa Valley in Chile (González and Charlín, 1968).  It seems likely that climate would limit the potential distribution of this scale to the warmer southern portions of the state.  Therefore, Hemiberlesia palmae receives a Medium (2) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Hemiberlesia palmae is highly polyphagous and has been reported to feed on plants in at least 53 families.  Therefore, it receives a High (3) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Reproductive and Dispersal Potential: Hemiberlesia palmae apparently has high reproductive and dispersal potential.  It is parthenogenetic, so a female does not have to mate to produce viable offspring.  The frequent interceptions on plant material indicate that it could be spread through that pathway.  Therefore, it receives a High (3) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

Economic Impact: Hemiberlesia palmae is regulated by some countries, and if it became established in California, this could lead to the loss of markets.  If control measures were taken by growers to control this scale, it would likely increase production costs.  Therefore, it receives a Medium (2) in this category.

Economic Impact:  B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: If Hemiberlesia palmae became established in California, it would likely attack a wide variety of crop and ornamental plants, and this could trigger treatments. Therefore, it receives a Medium (2) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Hemiberlesia palmae: Medium (12)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Although Hemiberlesia palmae has been found in various nurseries in California, it has apparently been eradicated whenever found and is not considered to be established in the state.  It receives a Not established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: Medium (12)

Uncertainty:

There is significant uncertainty regarding the ability of this scale to inflict significant damage on plants in California.  Although this scale is widespread and feeds on a wide diversity of plants, including many economically important ones, no information was found quantifying damage caused by this feeding.

Conclusion and Rating Justification:

Hemiberlesia palmae is a highly polyphagous scale that could become a pest in California if it became established here.  In addition, it is regulated by some countries and its presence in the state could impact trade.  It is not known to be present in California.  For these reasons, an “A” rating is justified.


References:

Agricultural Research Service.  1969.  Cooperative economic insect report 19.  United States Department of Agriculture, Agricultural Research Service, Plant Pest Control Division, Survey and Detection Operations.

Amún, C. and Claps, L. E.  2015.  Listado actualizado de diaspídidos sobre frutos tropicales y primer registro de Pseudaulacaspis cockerelli (Cooley) (Hemiptera: Diaspididae) para la Argentina.  Insecta Mundi 0449:1-11.

Ben-Dov, Y. and Sánchez-García, I.  2015.  New data on several species of scale insect (Hemiptera: Coccoidea) from southern Spain.  Boletín de la Sociedad Entomológica Aragonesa 56:313-317.

Brown, S.W.  1965.  Chromosomal survey of the armored and palm scale insects (Coccoidea: Diaspididae and Phoenicoccidae).  Hilgardia 36:189-294.

California Department of Food and Agriculture.  Pest and damage record database.  Accessed July 3, 2018:
https://pdr.cdfa.ca.gov/PDR/pdrmainmenu.aspx

Culik, M. P., Wolff, V. R. S., Peronti, A. L. B. G., Ben-Dov, Y., and Ventura, J. A.  2011.  Hemiptera, Coccoidea: Distribution extension and new records for the states of Espírito Santo, Ceará, and Pernambuco, Brazil.  Check List 7:567-570.

Dekle, G. W.  1976.  Florida Armored Scale Insects.  Florida Department of Agriculture, Division of Plant Industry, Gainesville, Florida.

De Lotto, G.  1967.  A contribution to the knowledge of the African Coccoidea (Homoptera).  Journal of the Entomological Society of South Africa 29:109-120.

Food and Agriculture Organization.  2016.  List of quarantine pests in Korea.  Accessed July 6, 2018:

https://www.ippc.int/en/countries/republic-of-korea/reportingobligation/2014/04/the-list-of-quarantine-pest-2013/

Franco, J. C., Russo, A., and Marotta, S.  2011.  An annotated checklist of scale insects (Hemiptera: Coccoidea) of Portugal, including Madeira and Azores Archipelagos.  Zootaxa 3004:1-32.

García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y., and Hardy, N. B. 2016.  ScaleNet: A literature-based model of scale insect biology and systematics.  Accessed July 20, 2018:
http://scalenet.info

Germain, J. F., Attie, M., Barbet, A., Franck, A., and Quilici, S.  2008.  New scale insects recorded for the Comoros and Seychelles Islands. pp. 129–135. In Branco, M., J. C. Franco, and C. J. Hodgson. [Eds.]. Proceedings of the XI International Symposium on Scale Insect Studies, Oeiras, Portugal, 24–27 September 2007. ISA Press. Lisbon, Portugal. 322 pp.

González, R. H. and Charlín, R.  1968.  Nota preliminar sobre los insectos coccoideos de Chile.  Revista Chilena de Entomología 6:109-113.

Granara De Willink, M. C. and Claps, L. E.  2003.  Cochinillas (Hemiptera: Coccoidea) presents en plantas ornamentals de la Argentina.  Neotropical Entomology 32:625-637.

Kondo, T. and Muñoz, J. A.  2016.  Scale insects (Hemiptera: Coccoidea) associated with avocado crop, Persea americana Mill. (Lauraceae) in Valle del Cauca and neighboring departments of Colombia.  Insecta Mundi 0465:1-24.

Malumphy, C.  2012.  Arthropods intercepted on air plants (Tillandsia spp.) imported from Guatemala into England and Wales.  Entomologist’s Gazette 63:54-62.

Malumphy, C.  2014.  An annotated checklist of scale insects (Hemiptera: Coccoidea) of Saint Lucia, Lesser Antilles.  Zootaxa 3846:069-086.

McKenzie, H. L.  1956.  The Armored Scale Insects of California.  University of California Press, Berkeley, California.

Miller, D. R.  2005.  Selected scale insect groups (Hemiptera: Coccoidea) in the southern region of the United States.  Florida Entomologist 88:482-501.

Nuñez, E.  2008.  Plagas de paltos y cítricos en Perú.  324-344 in Ripa, R. and Larral, P. (eds.) Manejo de Plagas en Paltos y Cítricos.  Instituto de Investigaciones Agropecuarias, La Cruz, Chile.

Ponsonby, D. J.  1994.  Biological control of glasshouse scale insects using the coccinellid predator, Chilocorus nigritus.  Ph.D. thesis.  University of London.

Santos, M. G. and dos Santos Wolff, V. R.  2015.  Two species of armored scale insects (Hemiptera: Diaspididae) associated with sori of ferns.  EntomoBrasilis 8:232-234.

Schmutterer, H.  1971.  Contribution to the knowledge of the crop pest fauna in Ethiopia.  Zeitschrift für Angewandte Entomologie 67:371-389.

Sepúlveda C., G., Vargas C., H., Bobadilla G., D., Cajías A., E., and Gallo D., P.  2010.  Protocolos de manejo de plagas bajo criterios de producción limpia en olivo.  pp. 83-105 in A. Villavicencio and F. Tapia (eds.), Formulación de sistemas de producción limpia para los principales cultivos del valle de Azapa.  Proyecto Innova Chile de Corfo, Arica, Chile.

Szent-Ivany, J. J. H. and Catley, A.  1960.  Host plant and distribution records of some insects in New Guinea and adjacent islands.  Pacific Insects 2:255-261.

Symbiota Collections of Arthropods Network.  Accessed July 20, 2018:
http://scan1.acis.ufl.edu

Thuy, N. T., Vuong, P. T., and Hung, H. Q.  2011.  Composition of scale insects on coffee in Daklak, Vietnam and reproductive biology of Japanese mealybug, Planococcus kraunhiae Kuwana (Hemiptera: Pseudococcidae).  Journal of the International Society for Southeast Asian Agricultural Sciences 17:29-37.

Vasquez, J., Delgado, C., Couturier, G., and Ferrero, D. M.  2002.  Les insectes nuisibles au goyavier (Psidium guajava L.: Myrtaceae) en Amazonie péruvienne.  Fruits 57:323-334.

Waltman, K. G., Ray, C. H., and Williams, M. L.  2016.  The armored scale insects (Hemiptera Diaspididae) of Alabama, USA.  REDIA 99:229-231.

Williams, D. J.  1973.  Scale insects (Homoptera: Coccoidea) on macadamia.  Journal of the Australian Entomological Society 12:81-91.


Responsible Party:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

8/22/18 – 10/6/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A


Posted by ls 

Mango Scale | Aulacaspis tubercularis Newstead

California Pest Rating for
Aulacaspis tubercularis Newstead: Mango scale
Hemiptera: Diaspididae
Pest Rating: A

PEST RATING PROFILE

Initiating Event:

Aulacaspis tubercularis is frequently intercepted by CDFA. It is currently rated Q, and a pest rating proposal is required to support a permanent pest rating.

History & Status:

Background: Aulacaspis tubercularis is commonly known as white mango scale, mango scale and Cinnamon scale. Immatures and adult females of this scale are covered by a white scale cover that is semi-circular in females and elongate in males. Immatures and adult females feed on plant fluids. Aulacaspis tubercularis is highly polyphagous and damages a wide range of perennials, ornamentals, and fruit trees.

Mango (Mangifera indica) is the preferred host of this pest, but it has been reported to feed on a wide variety of plants in at least 30 genera in 18 families including: Anacardiaceae, Annonaceae, Arecaceae, Burseraceae, Cucurbitaceae, Calophyllaceae, Iridaceae, Lauraceae, Loranthaceae, Meliaceae, Myrtaceae, Percidae, Pittosporaceae, Rhizophoraceae, Rosaceae, Rutaceae, Sapindacea and Zingiberaceae (García Morales et al. 2018).

Worldwide Distribution: Aulacaspis tubercularis is widely distributed in all tropical Africa, including Madagascar, Mauritius, Reunion, Rodriques Island, and South Africa, and most of the Neotropical region.  In Asia it is reported from China, Japan, India, Indonesia, Malaysia, Pakistan, Philippine, Sri Lanka, Taiwan, Thailand, Egypt, Iraq and Israel (Hodges & Hamon 2016).

In the United States, this scale was reported in Florida. Puerto Rico and the U.S. Virgin Islands (García Morales et al. 2018).

Distribution Map by CABI
Distribution Map by CABI

Official Control: Aulacaspis tubercularis is listed as a harmful organism in Costa Rica, Korea, Seychelles, Guatemala, and Ecuador (PCIT, 2018).

California Distribution: Aulacaspis tubercularis has never been found in the environment in California.

California Interceptions: Aulacaspis tubercularis was intercepted 273 times in California since 2010. Most of these interceptions were on infested mangoes coming from South American countries (CDFA PDR database).

The risk Aulacaspis tubercularis (mango scale) would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Hosts plants of Aulacaspis tubercularis are grown throughout California and southern coastal weather is quite favorable for this insect to spread and become established wherever its hosts are grown. It receives a Medium (2) in this category.

Evaluate if the pest would have suitable hosts and climate to establish in California:

Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Aulacaspis tubercularis has been reported to feed on plants in at least 30 genera in 18 families. It receives a High (3) in this category.

Evaluate the host range of the pest.

Low (1) has a very limited host range.

Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Aulacaspis tubercularis has a high reproductive rate; adult females can lay up to 200 eggs. (Miller and Davidson, 2005). This scale can be spread by wind or by hitchhiking on animals or equipment. It may also be spread long distances through the movement of infested plants or fruit. Therefore, it receives a High (3) in this category.

 Evaluate the natural and artificial dispersal potential of the pest.

Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: There is little information available on the economic importance of this pest other than that it considered a major pest of mango in many parts of the world (Miller and Davidson, 1990). Known hosts also include cucurbits, citrus, Prunus, and avocado.  The scale may lower yields in these crops and increase production costs by triggering new management programs. It is not expected to change cultural practices, vector other organisms, injure animals, or disrupt water supplies. It receives a High (3) in this category.

Evaluate the economic impact of the pest to California using the criteria below.

Economic Impact: A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Aulacaspis tubercularis is not expected to lower biodiversity, disrupt natural communities, or change ecosystem processes. No known hosts of the scale are listed as threatened or endangered species in California and the scale is not expected to affect critical habitats. It might trigger new chemical treatments in agriculture and by residents who find infested plants unsightly. It receives a Medium (2) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact:  D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact: Score: 2

Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Aulacaspis tubercularis (mango scale):  High (13)

Low = 5-8 points

Medium = 9-12 points

-High = 13-15 points

6) Post Entry Distribution and Survey Information: Aulacaspis tubercularis has never been found in the environment in California and receives a Not Established (0) in this category

Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

-Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score

The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (13)

Uncertainty:

Aulacaspis tubercularis is commonly intercepted on mango shipments coming from South America and presumably has remained undetected on other consignments. It is possible that it is present in some parts of California or may have failed to establish.

Conclusion and Rating Justification:

Aulacaspis tubercularis apparently is not present in California.  If it became established here, it could cause significant economic and environmental impacts. An “A” rating is justified.


References:

García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y., and Hardy, N. B. 2016.  Aulacaspis tubercularis.  Scale Net: A literature-based model of scale insect biology and systematics. Accessed June 22, 2018:  http://scalenet.info/catalogue/Aulacaspis%20tubercularis/

Hodges, G. and Hamon, A. 2016.  Pest Alert Florida, FDACS-P-01697 Accessed June 22, 2018: https://www.freshfromflorida.com/layout/set/print/content/download/67879/1610662/version/1/file/Pest+Alert+-++Aulacaspis+tubercularis%2C+White+Mango+Scale.pdf

USDA Phytosanitary Certificate Issuance & Tracking System (PCIT). Phytosanitary Export Database (PExD). Harmful organism report: Aulacaspis tubercularis. Accessed June 22, 2018:  https://pcit.aphis.usda.gov/pcit/

CDFA Pest and Damage Report Database, 2011. Aulacaspis tubercularis. Plant Health and Pest Prevention Services. CA Department of Food and Agriculture. Accessed June 22, 2018: http://phpps.cdfa.ca.gov/user/frmLogon2.asp


Author:

Javaid Iqbal, 1220 N Street, Sacramento, CA, 95814, (916) 654-1211, plant.health[@]cdfa.ca.gov.

Responsible Party:

Jason Leathers, 1220 N Street, Sacramento, CA, 95814, (916) 654-1211, plant.health[@]cdfa.ca.gov.


Comment Period:* CLOSED

8/14/18 – 9/28/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A


Posted by ls 

 

Two-lined Spittlebug | Prosapia bicincta (Say)

California Pest Rating for
Prosapia bicincta (Say): Two-lined spittlebug
Hemiptera-Cercopidae
Pest Rating: A

 


PEST RATING PROFILE

Initiating Event:

Prosapia bicincta Say is present in the Eastern United States. It has been intercepted by CDFA three times in 2017, with the most recent interception occurring at the Needles inspection station on a shipment of Citrus from Atlanta, Georgia. This species has a temporary Q rating pending risk analysis in California. A pest rating proposal is required to assign a permanent rating

History & Status:

BackgroundProsapia bicincta are true bugs that occur from the states of Maine to Florida, and west to Iowa, Kansas and Oklahoma (Campbell, 2016). Nymphs and adults are xylem feeders and feed on any plants that provide fluid to meet its requirements (Pass and Reed, 1965). Its main hosts include grasses, ornamental plants, crops and weeds. Their damage is most noticeable when immature stages of the insect produce masses of frothy spittle while feeding on the host. This spittle encircles the twigs and young leaves of the hosts (Cornille 2005, Godwin, 2008).

Adults are 8-10 mm long and dark brown to black in color. They generally have two red-orange lines crossing the wings. However, adults can be marked sometimes. They are most active in early morning and hide near the soil surface or in the foliage for the rest of the day. At night, adults become active and are attracted to lights (Campbell, 2016).

Prosapia bicincta is an important pest of pasture grass in the south eastern United States. Both adults and nymphs absorb plant juices with their piercing & sucking mouth parts; with adults causing the most damage. Adults inject a poison at the feeding site and this poison causes loss of chlorophyll in the host, resulting in drying out and death of plants. (Campbell, 2016)

Worldwide Distribution:

Prosapia bicincta is native to North America and is present in Cuba, the United States and Canada (CABI 2017). In the United States, it ranges from Maine to Florida in the east and Iowa, Kansas and Oklahoma, Texas and Arkansas in the west.

Official Control: Prosapia bicincta has been listed as a harmful organism in Brazil, Colombia and Japan (PCIT, 2018).

California DistributionProsapia bicincta has never been found in the natural environment of California.

California InterceptionsProsapia bicincta was intercepted 35 times between January 1990 and January 2018 by CDFA through detection surveys, border stations, and federal exterior quarantine activities (CDFA Pest and Damage Report Database, 2018)

The risk Prosapia bicincta (two lined spittlebug) would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Prosapia bicincta needs a humid, moist environment and cannot survive in draught conditions. Nymphs camouflage by living in foam nest that they make by blowing bubbles through their abdomen into plant juices. More insects have been reported during the rainy years when more thatch is available. Nests usually occur near soil surface or in thatch. (Campbell, 2016) Since it is a native species and widely prevalent in south-eastern US and some western states, it is likely to be introduced and established in California during the moist and wet winter months. It receives a Medium (2) in this category.

Evaluate if the pest would have suitable hosts and climate to establish in California:

Score: 2

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Prosapia bicincta is known to feed on nine families of ornamental and crop plants (John Pickering, 2018). Nymphs primarily feed on centipede grass, coastal bermudagrass and other bermudagrass cultivars. Damage has been reported on other grasses such as pangolagrass, and St. Augustine grass. Other susceptible hosts include sweet corn, seashore paspalum, zoysiagrass, and tall fescue. Adults feed on ornamental hollies used in landscapes. (Nachappa, 2004). Most of these hosts are present throughout California. It receives a High (3) in this category.

Evaluate the host range of the pest:

Score: 3

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Prosapia spp. females lay approximately 45 eggs on average. Eggs hatch in about two weeks. Nymphs undergo four instars within one month. Spittle bugs overwinter as eggs in hollow stems and in thatch at base of the grass. There are two generations in a year (Cornille 2005, Godwin, 2008). This species is most active from late spring through early fall. It receives a Medium (2) in this category.

Evaluate the natural and artificial dispersal potential of the pest:

Score: 2

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Prosapia spps. can reduce forage quality and availability, thereby competing with grazing animals. They are likely to causes huge losses to improved pastures. Prosapia bicincta feed on the underside of the leaves and inject poison that cause the plant to lose its chlorophyll. Nymphs remove a lot of fluid from the plants to continuously produce spittle (Campbell, 2016). Heavily infested pastures turn brown, become unproductive and may experience die back in large patches (Vendramini et al., 2015). Use of cultural practices such as burning of dense mats of infested pastures, stockpiling for grazing in the following season, killing eggs in spring and preventing thatch accumulation can add to production costs. It receives a High (3) in this category.

Evaluate the economic impact of the pest to California using the criteria below:

Economic Impact: A, B, D

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Prosapia bicincta is not likely to lower biodiversity and disrupt natural communities. It is also not known to impact major endangered and threatened species in California. However, if this species is introduced and gets established, it may impact grassland species such asTrifolium amoenum, an endangered annual herb occurring in grassland areas of the San Francisco Bay area and the northern California (California Native Plant Society, 2018). Being an economic pest of grasses, this species is likely to trigger official treatments if it gets established in rangelands in the state.  It receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below:

Environmental Impact:  B, D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact:

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Prosapia bicincta (two lined spittlebug): High (13)

Add up the total score and include it here:

-Low = 5-8 points

-Medium = 9-12 points

High = 13-15 points

6) Post Entry Distribution and Survey Information: Prosapia bicincta (two-legged spittle bug) has never been found in the environment in California and receives a Not Established (0) in this category.

Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included:

Score: 0

Not established (0) Pest never detected in California, or known only from incursions.

-Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

-Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

-High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

The final score is the consequences of introduction score minus the post entry distribution and survey information score: High (13)

Uncertainty:

Prosapia bicincta is native to North America and is a most important pest of pastures in southeastern Unites States. This species has not yet been introduced to CA, possibly due to dry weather in most of the state during summer months. However, if it is introduced during rainy and winter months and get established, it could significantly impact the pastures in the state. Because this species is currently established in the southeastern states, any host material coming from those areas could potentially contain P. bicinta. Surveys of California wetlands and coastal areas could be helpful in early detection of this spittlebug. Because it is unable to establish in areas with hot and dry summers, its economic impacts may not be significant.

Conclusion and Rating Justification:

Prosapia bicincta has not been reported in the environment of California and based on weather conditions and time of the year, it is likely to have significant economic and environmental impacts if it were to enter the state.  An “A”-rating is justified.


References:

California Native Plant Society, 2018. Inventory of Rare and Endangered Plants of California, online edition, v8-03 0.39. Accessed April 27, 2018:

http://www.rareplants.cnps.org

Campbell, D. 2016. Brief Summary- Prosapia bicincta (Say 1830). Encyclopedia of Life. Accessed 4/26/2017:

http://eol.org/pages/1079470/details

Cornille, S. 2005 and Goodwin, C. 2008. Two-lined Spittlebug. Texas Agrilife Extension Service. Dickinson, Texas. Accessed April 26, 2018:

https://aggie-horticulture.tamu.edu/galveston/Gardening_Handbook/PDF-files/GH-041–two-lined-spittlebug.pdf

Nachappa, Punya 2004. Biology and management of two lined spittlebug, Prosapia bicincta (Say) (Hempitera: Cercopidae) in turfgrass. MS Thesis. University of Georgia, Athens, GA. Accessed April 26, 2018:

https://getd.libs.uga.edu/pdfs/nachappa_punya_b_200412_ms.pdf

Pass, B. C., and Reed, J.K.1965. Biology and control of the spittlebug Prosapia bicincta in coastal Bermuda grass. J. Econ. Entomol. 58: 275-278:

Pickering, J. 2018. Prosapia bicinca (Say, 1830) Two-lined spittlebug. Discover Life. Accessed April 25, 2018:

http://www.discoverlife.org/20/q?search=Prosapia+bicincta#Hosts

Pest and Damage Record Database. Pest Prevention and Plant Health Services. California Department of Food and Agriculture. Accessed 4/24/2018:

http://phpps.cdfa.ca.gov/user/frmLogon2.asp

Vandramini, J, Debeux, J.C.B. Jr. and Buss, E. 2015. Management of Spittlebugs in Pasture. University of Florida, IFAS Extension. Accessed April 25, 2018:

http://edis.ifas.ufl.edu/ag242

USDA Phytosanitary Certificate Issuance & Tracking System (PCIT) Phytosanitary Export Database (PExD). Accessed 4/24/18: https://pcit.aphis.usda.gov/PExD/faces/PExDReport.jsp


Author:

Raj Randhawa, 1220 ‘N’ Street, Room 221, Sacramento CA 95814, (916) 403-6617, plant.health[@]cdfa.ca.gov.

 

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

7/30/18 – 9/13/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A

 


Posted by ls 

Barber Giant Mealybug | Puto barberi (Cockerell)

Alessandra Rung, Scale Insects, USDA APHIS ITP, Bugwood.org
California Pest Rating for
Barber Giant Mealybug | Puto barberi (Cockerell) 
Hemiptera: Putoidae
Pest Rating: A

PEST RATING PROFILE

Initiating Event:

Puto barberi is currently Q-rated.  A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:   Puto barberi is a common neotropical mealybug.  Immatures and adult females are covered in a powdery, white wax.  Adult females reach 4.3 mm in length.  This polyphagous mealybug has been reported to feed on 37 families of plants, including Apocynaceae, Asteraceae, Bromeliaceae, Caprifoliaceae, Caryophyllaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Lamiaceae, Lauraceae, Lomariopsidaceae, Lythraceae, Malvaceae, Nyctaginaceae, Oleaceae, Polygonaceae, Rosaceae, Rubiaceae, Rutaceae, Solanaceae, Sterculiaceae, Tamaricaceae, Thunbergiaceae, Umbelliferae, and Verbenaceae (Malumphy, 2014; Portilla and Cardona, 2004).  It can be found on the foliage, fruit, and roots of plants (García Morales et al., 2016).  It is a well-known pest of coffee; it feeds underground on the roots of that plant and has been reported to be the most significant mealybug pest of coffee in Colombia (Villegas-García and Benavides-Machado, 2011).  The underground lifestyle makes insecticidal control challenging (Builes et al., 2014).  It has also been reported from avocado, citrus, and strawberries, but no information was found regarding the damage inflicted (if any) (García et al., 2013; Kondo and Muñoz, 2016; Williams and Granara de Willink, 1992).  Besides removing the phloem when feeding, an additional impact on plants that has been reported is the excretion of honeydew and resulting growth of mold on the plant.  In addition to impacting the appearance of the plant, mold can reduce photosynthesis (Malumphy, 2010).  Puto barberi has been shown to be parthenogenetic under laboratory conditions.  It is not known if sexual reproduction occurs in the field (García et al., 2013).

Worldwide Distribution:  Puto barberi appears to be restricted in distribution to the Neotropics, where it is apparently native, and the Canary Islands, where it is presumably introduced (Gavrilov-Zimin and Danzig, 2015; Malumphy, 2014).  It is widespread in the Caribbean, including Antigua and Barbuda, Bahamas, Dominican Republic, Jamaica, Puerto Rico, and Trinidad and Tobago (Portilla and Cardona, 2004; Miller, 2005; Williams and Granara de Willink, 1992).  It is also reported from South America (Colombia and Venezuela) (Kondo et al., 2008; Urtiaga, 2017).

Official Control: Puto barberi is considered reportable by USDA-APHIS (USDA-APHIS).

California Distribution:  Puto barberi is not known to be present in California (Symbiota Collections of Arthropods Network).

California Interceptions:  Puto barberi was intercepted on cut flowers of Alpinia sp. from Florida in 2018 (California Department of Food and Agriculture).

The risk Puto barberi would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Puto barberi is reported to attack a wide variety of plants, and it is likely that it could find suitable host plants in much of California.  Climate, however, is expected to limit the potential distribution of this species in California.  This mealybug appears to currently be limited to areas with a tropical or (possibly) subtropical climate; this includes the areas it has been introduced to in the Canary Islands.  It does not appear to have spread into the southeastern United States or Mexico or further south than Colombia or Venezuela in South America, which supports the idea that a tropical/subtropical climate is required by this species.  If this mealybug was able to become established in California, it would likely be limited to a very small area, possibly on the coast in the southern part of the state.  Therefore, Puto barberi receives a Low (1) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: As stated above, Puto barberi is reported to feed on at least 37 families of plants.  Therefore, it receives a High (3) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Reproductive and Dispersal Potential: Puto barberi has been shown to be parthenogenetic, which means a single female can establish a population.  Immatures and adult females could be transported on infested plant material.  Therefore, it receives a High (3) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Coffee is now being grown in several California counties, including San Diego and Santa Barbara (Kan-Rice, 2017).  Puto barberi is considered a significant pest of coffee.  It is possible that if this mealybug became established in southern California, it could have an impact on coffee, including lowering yield and increasing production costs.  As a highly polyphagous mealybug, it could attack other crops as well.  The presence of this pest in California could result in quarantines because it is considered Reportable by the USDA.  Therefore, it receives a High (3) in this category.

Economic Impact:  A, B, C

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 3

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Puto barberi is reported to attack a wide variety of plants. If this species became established in California, it could trigger treatments in cropland or gardens.  Therefore, it receives a Medium (2) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact:  D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Puto barberi: Medium (12)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Puto barberi is not known to occur in California.  It receives a Not established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: Medium (12)

Uncertainty:

The most significant uncertainty involved with this proposal is the climatic suitability of California for Puto barberi.  The known distribution of this species strongly suggests that it might not be capable of becoming established in climates other than tropical/subtropical.  Even if this mealybug is able to become established in California, there is uncertainty regarding its ability to impact crops in California.  Information was not found regarding impacts of this species on any crops other than coffee.

Conclusion and Rating Justification:

Puto barberi is a polyphagous mealybug that is a recognized pest.  If it was able to become established in California, it could attack a variety of crops and ornamental plants.  It is not known to be present in California.  For these reasons, an “A” rating is justified.


References:

Builes, V. H. R., Bustamante, Á. L. G., Machado, P. B., Chaure, L. M. C., Palacio, Z. N. G., Khalajabadi, S. S., and Osorio, H. G.  2014.  Recomendaciones para la reducción del riesgo en la caficultura de Colombia ante un evento climático de El Niño.  Gerencia Técnica 445:1-12.

California Department of Food and Agriculture.  2018.  Pest and damage record database.  Accessed July 3, 2018: https://pdr.cdfa.ca.gov/PDR/pdrmainmenu.aspx

García, C. V., Peña M., H. D., Muñoz H., R. I., Martínez C., H. E., and Machado, P. B.  2013.  Aspectos del ciclo de vida de Puto barberi Cockerell (Hemiptera: Putoidae).  Revista Cenicafé 64:31-41.

García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y., and Hardy, N. B. 2016.  ScaleNet: A literature-based model of scale insect biology and systematics.  Accessed July 2, 2018: http://scalenet.info

Gavrilov-Zimon, I. A. and Danzig, E. M.  2015.  Some additions to the mealybug fauna (Homoptera: Coccinea: Pseudococcidae) of the Canary Islands.  Zoosystematica Rossica 24:94-98.

Kan-Rice, P.  2017.  California’s nascent coffee industry to hold inaugural summit.  Accessed July 3, 2018: http://ucfoodobserver.com/2017/12/12/californias-nascent-coffee-industry-to-hold-inaugural-summit/

Kondo, T. and Muñoz, J. A.  2016.  Scale insects (Hemiptera: Coccoidea) associated with avocado crop, Persea americana Mill. (Lauraceae) in Valle del Cauca and neighboring departments of Colombia.  Insecta Mundi 0465:1-24.

Kondo, T., Portilla, A. A. R., and Navarro, E. V. V.  2008.  Updated list of mealybugs and putoids from Colombia (Hemiptera: Pseudococcidae and Putoidae).  Boletín del Museo de Entomología de la Universidad del Valle 9:29-53.

Malumphy, C.  2010.  Barber giant mealybug Puto barberi (Cockerell) (Hemiptera: Pseudococcidae), a neotropical pest of ornamental plants established in Gran Canaria, Spain.  Entomologist’s Monthly Magazine 146:21-25.

Malumphy, C.  2014.  An annotated checklist of scale insects (Hemiptera: Coccoidea) of Saint Lucia, Lesser Antilles.  Zootaxa 3846:069-086.

Miller, D. R.  2005.  Selected scale insect groups (Hemiptera: Coccoidea) in the southern region of the United States.  Florida Entomologist 88:482-501.

Portilla, A. A. R. and Cardona, F. J. S.  2004.  Coccoidea de Colombia, con énfasis en las cochinillas harinosas (Hemiptera: Pseucococcidae).  Revista Facultad Nacional de Agronomía Medellín 57:2383-2412.

Symbiota Collections of Arthropods Network.  Accessed July 2, 2018: http://scan1.acis.ufl.edu

Urtiaga, R.  2017.  Catálogo de insectos y acaros en plantas de Venezuela.  Accessed June 29, 2018: https://www.researchgate.net/publication/315147441_Catalogo_de_Insectos_y_Acaros_en_Plantas_de_Venezuela

USDA-APHIS.  U.S. regulated plant pest table.  Accessed July 2, 2018: https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-information/rppl/rppl-table

Villegas-García, C. and Benavides-Machado, P.  2011.  Identificación de cochinillas harinosas en las raíces de café en departamentos cafeteros de Colombia.  Revista Cenicafé 62:48-55.

Williams, D. J. and Granara de Willink, M. C.  1992.  Mealybugs of Central and South America.  CAB International, London, England.


Author:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741; plant.health[@]cdfa.ca.gov.

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

7/24/18 – 9/07/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A


Posted by ls 

A Seed Bug | Ochrimnus mimulus (Stal)

California Pest Rating for
Ochrimnus mimulus (Stål): A Seed Bug
Hemiptera: Lygaeidae
Pest Rating: A

 


PEST RATING PROFILE

Initiating Event:

Ochrimnus mimulus is currently Q-rated.  A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:  Adult Ochrimnus mimulus measure 5-6 mm in length and are grayish or brownish with pale yellow margins on the forewings and the pronotum (Hoffman, 1996).  This bug is found on and feeds on flowers of Asteraceae.  Baccharis species appear to be the preferred host, but feeding and development can take place on other genera as well.  Eggs are laid in the flowers, and the nymphs feed on these (Gould and Sweet, 2000; Palmer, 1986).  Feeding on flowers reduces seed production by the host plant.  Experiments have shown that this species will attack numerous genera of Asteraceae.  This lack of host specificity made it inappropriate as a biological control organism for the introduced weed Baccharis halimifolia in Australia (Gould and Sweet, 2000).

Worldwide Distribution:  Ochrimnus mimulus occurs in the eastern United States (from Virginia south to Florida and west to Texas), Mexico, and Central America (Cancino and Blanco, 2002; Hoffman, 1996; Slater and Baranowski, 1990).

Official Control: Ochrimnus mimulus is not known to be under official control anywhere.

California Distribution:  Ochrimnus mimulus is not known to occur in California (Symbiota Collections of Arthropods Network).

California Interceptions:  Ochrimnus mimulus has been intercepted on rice, oranges, and bee colonies from Texas (CDFA Pest and Damage Report Database, 2018).

The risk Ochrimnus mimulus would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: Ochrimnus mimulus is found over a wide area, from Virginia to Mexico, suggesting that this bug has a wide climatic tolerance. Baccharis, the preferred host genus of mimulus, includes many species that are present in California (Calflora).  It appears likely that O. mimulus could become established over a large portion of California.  Therefore, Ochrimnus mimulus receives a High (3) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Ochrimnus mimulus appears to be mostly restricted to the Asteraceae, although it feeds on multiple genera within this family. Therefore, it receives a Medium (2) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Ochrimnus mimulus can apparently fly (it is collected at light). Therefore, it receives a Medium (2) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Ochrimnus mimulus is not known to be an economic pest, even though it is found over a wide area.  It appears unlikely that it would become an economic pest in California if it became established in this state.  Therefore, it receives a Low (1) in this category.

Economic Impact:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 1

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: Ochrimnus mimulus has been shown to have broad feeding preferences within the family Asteraceae and it prefers the genus Baccharis. Coyote brush, Baccharis pilularis, is a dominant shrub of coastal scrub in California.  If O.mimulus attacked this plant, it could impact species of plants and animals that live in these communities.  California also has rare Baccharis species, including Baccharis vanessae R.M. Beauch (Encinitas baccharis), that could be threatened by O. mimulus (Calflora).  Therefore, it receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact: A, B

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Ochrimnus mimulus: Medium (11)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Ochrimnus mimulus is not known to occur in California.  It receives a Not established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: Medium (11)

Uncertainty:

Even if O. mimulus is capable of becoming established in the state, it is not certain that it would have a significant impact on native plant species.  If this insect became established in California, it could possibly attack crop plants in the family Asteraceae, including artichoke, safflower, and tarragon, although it is not known how much economic damage (if any) would result.

Conclusion and Rating Justification:

Ochrimnus mimulus is a flower-feeding insect that is not known to be present in California.  It poses a threat to native California plants, including rare species.  For these reasons, an “A” rating is justified.

References:

Calflora.  2018.  Information on California plants for education, research and conservation, with data contributed by public and private institutions and individuals, including the Consortium of California Herbaria.  Accessed April 3, 2018: http://www.calflora.org

Cancino, E. R. and Blanco, J. M. C.  2002.  Artrópodos terrestres de los estados de Tamaulipas y Nuevo León, México.  Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, México.

CDFA Pest and Damage Report Database. 2018. Ochrimnus mimulus. Plant Health and Pest Prevention Services. CA Department of Food and Agriculture. Accessed April 9, 2018:  http://phpps.cdfa.ca.gov/user/frmLogon2.asp

Gould, G. G. and Sweet, M. H.  2000.  The host range and oviposition behavior of Ochrimnus mimulus (Hemiptera: Lygaeidae) in central Texas.  The Southwestern Naturalist 45:15-53.

Hoffman, R. L.  1996.  The Insects of Virginia.  Number 14: Seed Bugs of Virginia.  Virginia Museum of Natural History, Martinsville, Virginia.

Palmer, W. A.  1986.  Host specificity of Ochrimnus mimulus (Stål) (Hemiptera: Lygaeidae) with notes in its phenology.  Proceedings of the Entomological Society of Washington 88:451-454.

Slater, J. A. and Baranowski, R. M.  1990.  Arthropods of Florida and Neighboring Land Areas.  Volume 14: Lygaeidae of Florida (Hemiptera: Heteroptera).  Division of Plant Industry, Gainesville, Florida.

Symbiota Collections of Arthropods Network.  Accessed April 3, 2018: http://scan1.acis.ufl.edu


Author:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741; plant.health[@]cdfa.ca.gov.

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

6/21/18 – 8/5/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A

 


Posted by ls 

Mealybug | Vryburgia succulentarum

California Pest Rating for
Vryburgia succulentarum Williams: mealybug
Hemiptera: Pseudococcidae
Pest Rating: A

 


PEST RATING PROFILE

Initiating Event:

Vryburgia succulentarum is currently Q-rated.  A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:   Vryburgia succulentarum is a mealybug that occurs on succulent plants.  Adult females reach 3.1 mm in length (Williams, 1985).  This mealybug has been found on, and presumably feeds on plants in the families Aizoaceae, Cactaceae, and Crassulaceae (García Morales et al., 2016; Moghaddam, 2015; Williams, 1985).  Little else is known about the biology of this species.  Most Vryburgia species are native to Africa and are associated with succulent plants (Li and Suh, 2012).  Some Vryburgia species are capable of inflicting significant damage to succulents.  For example, V. trionymoides can kill succulents and is a greenhouse pest in California (Stocks, 2016).  Mealybugs in other genera that attack succulents have even been used as biological control agents of invasive cacti in Australia and South Africa (Aguirre et al., 2016).

Worldwide Distribution:  Vryburgia succulentarum is reported to occur in southern Australia, Iran (in greenhouses), South Africa, and Tasmania (García Morales et al., 2016; Moghaddam, 2015).  This species may be native to Africa; if so, the other localities represent introductions.

Official Control: Vryburgia succulentarum is not known to be under official control anywhere.

California Distribution:  Vryburgia succulentarum is not known to be present in California (Symbiota Collections of Arthropods Network).

California Interceptions:  Vryburgia succulentarum has not been intercepted in California (CDFA Pest and Damage Report Database, 2018).

The risk Vryburgia succulentarum would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: The full distribution of succulentarum may not be fully known. However, this species has been reported from areas in Australia and Tasmania that have Mediterranean and temperate climates (Atlas of Living Australia; Williams, 1985).  Therefore, much of California could have a suitable climate for this species.  There are many members of the families Cactaceae and Crassulaceae in California, so there are many potential host plants.  It appears likely that this mealybug could establish over a large portion of California.  Therefore, V. succulentarum receives a High (3) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: This mealybug has been reported to be associated with three families of succulent plants.  Therefore, it receives a Medium (2) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: This mealybug has been intercepted multiple times on plants in quarantine, so it is evidently capable of being spread artificially on infested plants (García Morales et al., 2016).  The Cactaceae and Crassulaceae include many popular landscaping plants, so this mode of dispersal is likely.  Therefore, it receives a Medium (2) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: The primary economic impact that is anticipated to occur if Vryburgia succulentarum becomes established in California is damage to cacti and succulents.  Nursery production of these plants were worth $83 million in 2016 in California, an increase of 15% from the previous year.  Continued growth appears likely, as water shortages in the state encourage the use of drought-tolerant plants.  Production of cacti and succulents appears to be concentrated in San Diego County (CDFA Nursery Program, 2018; San Diego County Department of Agriculture, Weights and Measures).  If it became established in the state, Vryburgia succulentarum could lower yield and increase production costs of cacti and succulents in California nurseries.  Therefore, it receives a Medium (2) in this category.

Economic Impact:  A, B

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: There are numerous rare members of the families Cactaceae and Crassulaceae in California. For example, bright green dudleya (Dudleya virens insularis) and Bakersfield cactus (Opuntia basilaris treleasei) (Calflora).  If V. succulentarum became established in this state, these plants could be threatened.  In addition, if V. succulentarum attacks succulent plants in residential or other areas, this could trigger treatments.  Therefore, it receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact:  B, E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Vryburgia succulentarum: Medium (12)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Vryburgia succulentarum is not known to occur in California.  It receives a Not established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: Medium (12)

Uncertainty:

The distribution and biology of V. succulentarum are poorly known.  The most significant unknown in this proposal is the ability of this mealybug to damage the plants that it feeds upon.  At least one species in the genus is reported to be a pest, but it may not be of economic significance.

Conclusion and Rating Justification:

Vryburgia succulentarum is a mealybug that attacks succulents, including Cactaceae and Crassulaceae.  This mealybug, which is not known to occur in California, poses a threat to native California species and to the nursery industry as well.  For these reasons, an “A” rating is justified.

References:

Aguirre, M. B., Diaz-Soltero, H., Claps, L. E., Saracho Bottero, A., Triapitsyn, S., Hasson, E., and Logarzo, G. A.  2016.  Studies on the biology of Hypogeococcus pungens (sensu stricto) (Hemiptera: Pseudococcidae) in Argentina to aid the identification of the mealybug pest of Cactaceae in Puerto Rico.  Journal of Insect Science 16:1-7.

Atlas of Living Australia website.  Accessed March 29, 2018: http://www.ala.org.au

Calflora: Information on California plants for education, research and conservation, with data contributed by public and private institutions and individuals, including the Consortium of California Herbaria.  Accessed March 26, 2017: http://www.calflora.org

CDFA Nursery Program.  2018. Value of California nursery products.  Nursery Advisory 01-2018:1-2.

CDFA Pest and Damage Report Database. 2018. Vryburgia succulentarum. Plant Health and Pest Prevention Services. CA Department of Food and Agriculture. Accessed April 5, 2018: http://phpps.cdfa.ca.gov/user/frmLogon2.asp

García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y., and Hardy, N. B. 2016.  ScaleNet: A literature-based model of scale insect biology and systematics.  Accessed March 28, 2018: http://scalenet.info

Ji, J. and Suh, S.-J.  2012.  A list of scale insects (Hemiptera: Coccoidea) intercepted in quarantine on imported succulent plants in Korea 2006-2010.  Insecta Mundi 0272:1-5.

Moghaddam, M.  2015.  New records of mealybug species in Iran with discussions on morphological variations (Hemiptera, Coccoidea: Pseudococcidae).  Entomologica Fennica 26:122-131.

San Diego County Department of Agriculture, Weights and Measures.  County of San Diego Crop Statistics & Annual Report (2016).  Accessed June 18, 2018:   https://www.sandiegocounty.gov/content/dam/sdc/awm/docs/AWM_2016_Crop_Report.pdf

Stocks, I.  2016.  A mealybug – Vryburgia trionymoides (DeLotto) (Pseudococcidae).  Florida Department of Agriculture and Consumer Services, Division of Plant Industry.  Accessed: April 5, 2018: http://entnemdept.ufl.edu/creatures/ORN/MEALYBUG/vryburgia_trionymoides.htm

Symbiota Collections of Arthropods Network.  Accessed March 28, 2018: http://scan1.acis.ufl.edu

Williams, D. J.  1985.  Australian mealybugs.  British Museum of Natural History, London.


Author:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741; plant.health[@]cdfa.ca.gov.

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

6/20/18 – 8/4/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A

 


Posted by ls 

A Mealybug | Trionymus sasae (Kanda)

California Pest Rating for
Trionymus sasae (Kanda): a mealybug
Hemiptera: Pseudococcidae
Pest Rating: A

 


PEST RATING PROFILE
Initiating Event:

Trionymus sasae is currently Q-rated.  A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:  Trionymus sasae is only known to occur in Japan and it is associated with (and presumably feeds on) bamboo (García Morales et al., 2016).  The localities it is reported from in Japan have a subtropical climate (Kawai, 1980).  Other species of Trionymus are also associated with grasses (Poaceae), and some are pests of crop (e.g., barley and sugarcane) or ornamental (e.g., bamboo) plants (Alvarez, 2004; Jansen, 2009; Portilla and Cardona, 2004).

Worldwide Distribution:  Trionymus sasae is only known from Japan.  It was reportedly intercepted in California on bamboo from Oregon in 1995, so it is possible that this mealybug may be established in other areas (possibly Oregon), but if so, this has not been reported (Gill, 1995).  Alternatively, this bamboo may have originally been shipped from Japan.

Official Control: Trionymus sasae is not known to be under official control anywhere.

California Distribution:  Trionymus sasae is not known to be present in California.

California Interceptions:  Trionymus sasae has been intercepted on bamboo from Japan and Oregon (California Department of Food and Agriculture; Gill, 1995).

The risk Trionymus sasae would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: The areas in Japan where sasae is reported to occur have a subtropical climate. If this mealybug became established in California, it might be limited to warmer areas, for example, the southern coast.  Therefore, T. sasae receives a Medium (2) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Trionymus sasae has been associated with two genera of bamboo. Therefore, it receives a Low (1) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Trionymus sasae has been intercepted on bamboo, so it is apparently capable of being dispersed through shipment of plant material.  Bamboo is a popular plant and is presumably moved frequently throughout the state.  Therefore, sasae receives a Medium (2) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Trionymus sasae lives on bamboo plants, which are popular ornamentals in California.  If this mealybug became established in California, it could attack bamboo plants in nurseries, impacting their health or at least detracting from their appearance and value.  This could increase production costs.  Therefore, sasae receives a Low (1) in this category.

Economic Impact:  B

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 1

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: There are many rare species in the family Poaceae in California (Calflora). If sasae became established in California, it could threaten some of these species.  This mealybug could also impact ornamental bamboo plantings, and this could trigger treatments.  Therefore, it receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact:  B, D, E

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 3

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Trionymus sasae: Medium (9)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Trionymus sasae is not known to be present in California.  It receives a Not established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: Medium (9)

Uncertainty:

The known distribution of this species suggests it may be limited to warmer (subtropical) climates.  If so, it may not be capable of establishment in California, or its area of potential distribution in the state could be quite limited.  The potential of T. sasae to damage plants is also not known.  Little information is available on this species, so the pest significance of other Trionymus species was considered in this proposal.  The potential of this mealybug to impact native grasses in California would require that this species not be limited to bamboo.

Conclusion and Rating Justification:

Very little information is available regarding the biology of Trionymus sasae.  This mealybug is not known to be present in California and it attacks bamboo (an important ornamental plant in the state).  For these reasons, an “A” rating is justified.


References:

Alvarez, J.M.  2004.  Trionymus haancheni McKenzie: A new pest of barley in Idaho.  Plant Management Network.  5 pp.

Calflora: Information on California plants for education, research and conservation, with data contributed by public and private institutions and individuals, including the Consortium of California Herbaria.  Accessed March 30, 2017 http://www.calflora.org

California Department of Food and Agriculture.  Pest and damage record database.  Accessed March 30, 2018. https://pdr.cdfa.ca.gov/PDR/pdrmainmenu.aspx

García Morales, M., Denno, B.D., Miller, D.R., Miller, G.L., Ben-Dov, Y., and Hardy, N.B. 2016.  ScaleNet: A literature-based model of scale insect biology and systematics.  Accessed March 28, 2018  http://scalenet.info

Gill, R.J.  1995.  Exclusion.  California Plant Pest and Disease Report.  14: 8-12.

Jansen, M.  2009.  New and less observed scale insect species for the Dutch fauna (Hemiptera: Coccoidea).  Entomologische Berichten.  69: 162-168.

Kawai, S.  1980.  Scale Insects of Japan in Colors.  National Agricultural Education Association.  Tokyo.  455 pp.

Portilla, A.A.R. and Cardona, F.J.S.  2004.  Coccoidea de Colombia, con énfasis en las cochinillas harinosas (Hemiptera: Pseudococcidae).  Revista Facultad Nacional de Agronomía Medellín.  57: 2383-2412.

Symbiota Collections of Arthropods Network.  Accessed March 30, 2018. http://scan1.acis.ufl.edu


Author:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741; plant.health[@]cdfa.ca.gov.

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

4/30/18 – 6/14/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A

 


Posted by ls 

A Leafhopper | Paraulacizes irrorata (Fabricus)

California Pest Rating for
Paraulacizes irrorata (Fabricius): a leafhopper
Hemiptera: Cicadellidae
Pest Rating: A

 


PEST RATING PROFILE
Initiating Event:

Paraulacizes irrorata is currently Q-rated.  A permanent pest rating proposal is required to support an official pest rating.

History & Status:

Background:  This is a large (~14 mm in length) leafhopper that is dark with numerous tiny, yellow spots (Overall and Rebek, 2017; Young, 1968).  It is reported to feed on a variety of plants, including thistles (Cirsium spp.) (Asteraceae), crape myrtle (Lagerstroemia indica) (Lythraceae), Virginia wildrye (Elymus virginicus) (Poaceae), horseweed (Conyza canadensis) (Asteraceae), prickly lettuce (Lactuca serriola) (Asteraceae), wholeleaf rosinweed (Silphium integrifolium) (Asteraceae), and sorghum (Sorghum sp.) (Poaceae).  It is found in vineyards, fruit orchards, and tree nurseries, so it is possible that it feeds on grapevines and trees (Ma et al., 2010; Myers et al., 2007; Overall, 2013).  Eggs are laid inside twigs and woody/hardened stems and leaf petioles (Tipping et al., 2006).  In a study in North Carolina vineyards, P. irrorata was shown to carry Xylella fastidiosa, the bacteria that causes Pierce’s disease and almond leaf scorch (Myers et al., 2007; Sisterson et al., 2010).  However, P. irrorata has not yet been shown to transmit the disease (Overall and Rebek, 2017).

Worldwide Distribution:  Paraulacizes irrorata is reported from the central, northeastern, and southeastern United States, Canada (Ontario), and northern Mexico (Maw et al., 2000; Pajero et al., 2008).

Official Control: Paraulacizes irrorata is not known to be under official control anywhere.

California Distribution:  Paraulacizes irrorata is not known to occur in California (Symbiota Collections of Arthropods Network).

California Interceptions:  Paraulacizes irrorata has been intercepted on plants from Arkansas, West Virginia, Louisiana, and Oklahoma in 1992, 2000, and 2007, in a trailer from Arkansas in 2017, on aircraft from Tennessee in 2000 and 2002, and on a FedEx shipment from Florida in 2017 (California Department of Food and Agriculture).

The risk Paraulacizes irrorata would pose to California is evaluated below.

Consequences of Introduction:

1) Climate/Host Interaction: The distribution of Paraulacizes irrorata extends from northern Mexico to Ontario, Canada.  This suggests that it could become established over a wide area in California.  This leafhopper feeds on a wide variety of plants, and there are likely suitable host plants in much of the state.  Therefore, Paraulacizes irrorata receives a High (3) in this category.

– Low (1) Not likely to establish in California; or likely to establish in very limited areas.

– Medium (2) may be able to establish in a larger but limited part of California.

– High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Paraulacizes irrorata has been reported to feed on at least seven genera of plants in three families, but it probably has a much broader host range than this. Therefore, it receives a High (3) in this category.

– Low (1) has a very limited host range.

– Medium (2) has a moderate host range.

– High (3) has a wide host range.

3) Pest Dispersal Potential: Paraulacizes irrorata presumably flies.  Therefore, it receives a Medium (2) in this category.

– Low (1) does not have high reproductive or dispersal potential.

– Medium (2) has either high reproductive or dispersal potential.

– High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Paraulacizes irrorata feeds on a broad range of plants.  The feeding damage could possibly lower crop yield, but a more serious concern, and a general one for the family Cicadellidae, is the potential for vectoring plant diseases.  It is not known if irrorata can vector plant diseases, but it has been confirmed as a carrier of Xylella fastidiosa, the bacteria that causes Pierce’s disease and almond leaf scorch.  If it was introduced to California, P. irrorata could potentially vector such pathogens and impact crops, including grapes and almonds.  Therefore, it receives a Medium (2) in this category.

Economic Impact:  A, E

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Economic Impact Score: 2

– Low (1) causes 0 or 1 of these impacts.

– Medium (2) causes 2 of these impacts.

– High (3) causes 3 or more of these impacts.

5) Environmental Impact: The presence of Praulacizes irrorata could trigger treatment programs. Therefore, it receives a Medium (2) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

Environmental Impact:  D

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Environmental Impact Score: 2

– Low (1) causes none of the above to occur.

– Medium (2) causes one of the above to occur.

– High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Paraulacizes irrorata: Medium (12)

Add up the total score and include it here.

–Low = 5-8 points

–Medium = 9-12 points

–High = 13-15 points

6) Post Entry Distribution and Survey Information: Paraulacizes irrorata is not known to occur in California.  It receives a Not established (0) in this category.

–Not established (0) Pest never detected in California, or known only from incursions.

–Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

–Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

–High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

7) The final score is the consequences of introduction score minus the post entry distribution and survey information score: Medium (12)

Uncertainty:

The possible impact of Paraulacizes irrorata is somewhat speculative and it is based on demonstrated examples of impact from other cicadellid species and the possibility of this leafhopper vectoring Pierce’s disease (or other diseases) in crops, including grapes.  This leafhopper has not been proven to transmit any plant diseases.

Conclusion and Rating Justification:

Paraulacizes irrorata is a plant-feeding insect that is potentially capable of vectoring plant diseases, including the causative agent of Pierce’s disease, Xylella fastidiosa.  There is little evidence that P. irrorata has a significant economic or environmental impact in its current range.  However, if it was established in California, this insect would be exposed to a new combination of variables, including new host plants and plant diseases; it is difficult to predict what impacts could result.  For these reasons, an “A” rating is justified.


References:

California Department of Food and Agriculture.  Pest and damage record database.  Accessed April 2, 2018. https://pdr.cdfa.ca.gov/PDR/pdrmainmenu.aspx

Maw, H.E.L., Foottit, R.G., Hamilton, K.G.A., and Scudder, G.G.E.  2000.  Checklist of the Hemiptera of Canada and Alaska.  National Research Council, Canada.  220 pp.

Myers, A.L., Sutton, T.B., Abad, J.A., and Kennedy, G.G.  2007.  Pierce’s disease of grapevines; Identification of the primary vectors in North Carolina.  Phytopathology.  97: 1440-1450.

Overall, L.M.  2013.  Incidence of Xylella fastidiosa in Oklahoma, survey of potential insect vectors, and identification of potential plant reservoir hosts.  Ph.D. Dissertation.  Oklahoma State University.  155 pp.

Overall, L.M. and Rebek, E.J.  2017.  Insect vectors and current management strategies for diseases caused by Xylella fastidiosa in the southern United States.  Journal of Integrated Pest Management.  8: 1-12.

Paiero, S.M., Marshall, S.A., Pratt, P.D., and Buck, M.  2008.  The insects of Ojibway Prairie, a southern Ontario tallgrass prairie.

Sisterson, M.S., Thammiraju, S.R., Lynn-Patterson, K., Groves, R.L., and Daane, K.M.  2010.  Epidemiology of diseases caused by Xylella fastidiosa in California: Evaluation of alfalfa as a source of vectors and inocula. Plant Disease. 94: 827-834.

Symbiota Collections of Arthropods Network.  Accessed March 2, 2018. http://scan1.acis.ufl.edu

Tipping, C., Triapitsyn, S.V., and Mizell III, R.F.  2006.  First record of an egg parasitoid for the North American proconiine sharpshooter Paraulacacizes irrorata (Hemiptera: Cicadellidae), with notes on rearing techniques.  Florida Entomologist.  89(2): 288-289.

Young, D.A.  1968.  Taxonomic study of the Cicadellinae (Homoptera: Cicadellidae); Part 1: Proconiini.  United States National Museum Bulletin.  261.  287 pp.


Author:

Kyle Beucke, 1220 N Street, Room 221, Sacramento, CA, 95814, 916-403-6741; plant.health[@]cdfa.ca.gov.

Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

4/30/18 – 6/14/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating: A

 


Posted by ls 

Pink Hibiscus Mealybug | Maconellicoccus hirsutus (Green)

California Pest Rating for
Pink Hibiscus Mealybug | Maconellicoccus hirsutus (Green)
Hemiptera: Pseudococcidae
Pest Rating:  A

 


PEST RATING PROFILE

Initiating Event:

August 26, 2014, Dr. Gillian Watson identified Maconellicoccus hirsutus from a sample collected on 100 heavily infested silk oak trees at a golf course in Rancho Mirage, Riverside County.  The mealybug was previously eradicated from Riverside County in 2011.  Follow-up surveys have revealed that the pest is now widespread and abundant in Riverside County.  An updated pest rating proposal is needed to determine future direction.

History & Status:

BackgroundMaconellicoccus hirsutus is a highly polyphagous mealybug that feeds on the stems, leaves, buds, fruit, and roots of plants in more than 200 genera in 77 plant families1,2.  Economically important hosts include grapes, citrus, avocado, cotton, Prunus spp., Solanum spp., and ornamentals.  While feeding, the mealybug injects toxic saliva into plants that inhibits cell enlargement, causing stunting of new growth and curling and contortion of leaves7.  Entire plants may be stunted and deformed7.  High populations can lead to the death of plants7.  The mealybug can spread long distances through the trade in host plants and fruit.

Worldwide Distribution: Maconellicoccus hirsutus is considered to be native to southern Asia1,2 and has invaded much of the Caribbean, Africa, Asia, Australia, Oceania, and South America.  In North America it has been found in Mexico, Florida, Georgia, Louisiana, Texas, and Imperial and Riverside counties, California3.  It has recently been detected and is under eradication in Tennessee6.

Official Control: Maconellicoccus hirsutus is listed as a quarantine pest by many nations including Antigua and Barbuda4, Bermuda4, Brazil4, Cayman Islands4, Chile4, Colombia4, Costa Rica4, Ecuador4, El Salvador4, Guatemala4, Honduras4, Israel4, Jamaica4, Japan4, Republic of Korea4, Mexico4, Morocco4, Nicaragua4, Panama4, Paraguay4, Peru4, South Africa4, Turkey4, Uruguay4, and the European Union2.

California DistributionMaconellicoccus hirsutus has been present in Imperial County since 1999.  The mealybug was detected in Riverside County in 2011 and successfully eradicated by the county.  The mealybug was detected again in Riverside County in 2014 infesting 100 silk oak trees at a golf course.

California Interceptions:  Maconellicoccus hirsutus is occasionally intercepted on fruit or plants headed for destinations within California, most often on longan fruits.

The risk Maconellicoccus hirsutus (pink hibiscus mealybug) would pose to California is evaluated below.

Consequences of Introduction: 

1) Climate/Host Interaction: Maconellicoccus hirsutus, due to its polyphagous nature, is likely to encounter suitable hosts throughout California. The present distribution of the mealybug corresponds to USDA plant hardiness zones 9-131, which encompasses much of California.  Pink hibiscus mealybug receives a High (3) in this category.

Evaluate if the pest would have suitable hosts and climate to establish in California.  Score:

Low (1) Not likely to establish in California; or likely to establish in very limited areas.

Medium (2) may be able to establish in a larger but limited part of California.

High (3) likely to establish a widespread distribution in California.

2) Known Pest Host Range: Maconellicoccus hirsutus is known to feed on plants in more than 200 genera in 77 plant families.  The mealybug receives a High(3) in this category.

Evaluate the host range of the pest. Score:

Low (1) has a very limited host range.

Medium (2) has a moderate host range.

High (3) has a wide host range.

3) Pest Dispersal Potential: Pink hibiscus mealybug has a high reproductive rate.  Each female lays 150-600 eggs and there can be up to 15 generations per year2.  The crawlers of this mealybug are reported to be very active and are capable of spreading to nearby plants; furthermore, they may be dispersed by wind or by hitchhiking on clothing, equipment, or animals.  The mealybugs may also be spread long distances through the movement of infested plants or fruit.  Maconellicoccus hirsutus receives a High (3) in this category.

Evaluate the natural and artificial dispersal potential of the pest. Score:

Low (1) does not have high reproductive or dispersal potential.

Medium (2) has either high reproductive or dispersal potential.

High (3) has both high reproduction and dispersal potential.

4) Economic Impact: Maconellicoccus hirsutus has been present in Imperial County since 1999, where it has been successfully controlled by biological control agents.  No economic damages in California are presently attributed to this pest.  In the presence of effective biological control, the mealybug is not expected to lower crop yields.  In the absence of effective biological control, yields are likely to be reduced (see uncertainty section below).  As it feeds on a wide variety of ornamentals, the mealybug may increase crop production costs in nurseries by triggering new chemical treatments to ensure clean nursery stock.  The mealybug is listed as a quarantine pest by many nations and its presence is likely to disrupt markets for California fresh fruit.  Pink hibiscus mealybug is not expected change cultural practices, vector pestiferous organisms, injure agriculturally important animals, or interfere with the delivery or supply of water for agricultural uses.  Maconellicoccus hirsutus receives a Medium (2) in this category.

Evaluate the economic impact of the pest to California using the criteria below. Score:

A. The pest could lower crop yield.

B. The pest could lower crop value (includes increasing crop production costs).

C. The pest could trigger the loss of markets (includes quarantines).

D. The pest could negatively change normal cultural practices.

E. The pest can vector, or is vectored, by another pestiferous organism.

F. The organism is injurious or poisonous to agriculturally important animals.

G. The organism can interfere with the delivery or supply of water for agricultural uses.

Low (1) causes 0 or 1 of these impacts.

Medium (2) causes 2 of these impacts.

High (3) causes 3 or more of these impacts.

5) Environmental Impact: Maconellicoccus hirsutus is not expected to lower biodiversity, disrupt natural communities, or change ecosystem processes.  Algodones Dunes sunflower (Helianthus niveus tephrodes), Bakersfield cactus (Opuntia basilaris var. treleasei), and small-leaved rose (Rosa minutifolia) are listed as threatened or endangered plants in California and are potential hosts of this mealybug.  An infestation of the mealybug in Riverside County in 2011 was eradicated by the county, indicating that the presence of this pest may trigger additional official treatment programs.  Additional treatments are also likely in the nursery industry and by residents who find infested plants unsightly.  In some cases, the mealybug is likely to be managed by biological control programs such that it does not significantly impact cultural practices, home/urban gardening, or ornamental plantings.  However, due to its extremely high reproductive rate and broad host range it is likely to sometimes cause significant damage to ornamental plants as it encounters them before biological control agents.  Maconellicoccus hirsutus receives a High (3) in this category.

Evaluate the environmental impact of the pest on California using the criteria below.

A. The pest could have a significant environmental impact such as lowering biodiversity, disrupting natural communities, or changing ecosystem processes.

B. The pest could directly affect threatened or endangered species.

C. The pest could impact threatened or endangered species by disrupting critical habitats.

D. The pest could trigger additional official or private treatment programs.

E. The pest significantly impacts cultural practices, home/urban gardening or ornamental plantings.

Score the pest for Environmental Impact. Score: 3

Low (1) causes none of the above to occur.

Medium (2) causes one of the above to occur.

High (3) causes two or more of the above to occur.

Consequences of Introduction to California for Maconellicoccus hirsutus (pink hibiscus mealybug):  High(14)

Add up the total score and include it here.

Low = 5-8 points

Medium = 9-12 points

High = 13-15 points

6) Post Entry Distribution and Survey Information: Maconellicoccus hirsutus is only known to be established in Imperial and Riverside counties. The mealybug receives a Low (-1) in this category.

Evaluate the known distribution in California. Only official records identified by a taxonomic expert and supported by voucher specimens deposited in natural history collections should be considered. Pest incursions that have been eradicated, are under eradication, or have been delimited with no further detections should not be included.

Not established (0) Pest never detected in California, or known only from incursions.

Low (-1) Pest has a localized distribution in California, or is established in one suitable climate/host area (region).

Medium (-2) Pest is widespread in California but not fully established in the endangered area, or pest established in two contiguous suitable climate/host areas.

High (-3) Pest has fully established in the endangered area, or pest is reported in more than two contiguous or non-contiguous suitable climate/host areas.

Final Score:

The final score is the consequences of introduction score minus the post entry distribution and survey information score: High(13)

Uncertainty:

There have been no recent statewide surveys for the mealybug, so it may have a larger distribution within California.  In the absence of surveys or official control, trading partners are likely to regulate the entire state, so range expansions of pink hibiscus mealybug may not trigger new impacts on fruit exports.  Pheidole megacephala (bigheaded ant) has recently been detected in California.  This is an aggressive ant that is likely to tend pink hibiscus mealybug and consume all parasites and predators it encounters, reducing the effectiveness of biological control5.  As bigheaded ant expands its range through southern California it is likely to facilitate the invasion of Maconellicoccus hirsutus and may disrupt the presently successful biological control program.  If this were to occur, yield of economically important crops such as almonds, peaches, pistachios, walnuts, olives, and citrus may be reduced.  Crop quality and production costs by increase in the long term.  This may elevate the economic impact of the pest to High (3).

Conclusion and Rating Justification:

Maconellicoccus hirsutus is a highly polyphagous mealybug with a limited distribution within California at present.  If it enters commercial fruit groves and vineyards the presence of the mealybug is likely to close or restrict export markets for fresh fruit.  If found outside of its present distribution, it will likely trigger treatment or biological control programs.  Although pink hibiscus mealybug has been known to be present in California since 1999 it remains under official active management programs including survey and biological control.  The “A” rating is supported while these remain in effect.


References:

1Culliney, T.W.  2014.  Deregulation Evaluation of Established Pests (DEEP); DEEP Report on Maconellicoccus hirsutus (Green): Egyptian hibiscus mealybug, pink hibiscus mealybug.

2Data sheets on quarantine pests:  Maconellicoccus hirsutus.  2005.  European and Mediterranean Plant Protection Organization.  OEPP/EPPO Bulletin 35, 413-415.  http://www.eppo.int/QUARANTINE/insects/Maconellicoccus_hirsutus/DS_Maconellicoccus_hirsutus.pdf

3Ben-Dov, Y. 2014. ScaleNet, Maconellicoccus hirsutus. Available online at http://www.sel.barc.usda.gov/catalogs/pseudoco/Maconellicoccushirsutus.htm  Accessed on 9 April 2014.

4USDA Phytosanitary Certificate Issuance & Tracking System (PCIT) Phytosanitary Export Database (PExD).  https://pcit.aphis.usda.gov/pcit/

5Buckley, Ralf and Penny Gullan.  1991.  More aggressive ant species (Hymenoptera: Formicidae) provide better protection for soft scales and mealybugs (Homoptera: Coccidae, Pseudococcidae).  Biotropica 23(3): 282-286. http://www.jstor.org/discover/10.2307/2388205?uid=3739560&uid=2&uid=4&uid=3739256&sid=21104122016081

6NAPIS; Email updated dated September 2, 2014.  http://pest.ceris.purdue.edu/capsreview.php?code=IRAWBIA

7Hoy, Marjorie A., Avas Hamon, and Ru Nguyen. 2006. Common name: pink hibiscus mealybug. University of Florida Featured Creatures. http://entnemdept.ufl.edu/creatures/orn/mealybug/mealybug.htm


Responsible Party:

Jason Leathers, 2800 Gateway Oaks, Sacramento CA 95833, (916) 654-1211, plant.health[@]cdfa.ca.gov


Comment Period:* CLOSED

4/25/18 – 6/9/18


*NOTE:

You must be registered and logged in to post a comment.  If you have registered and have not received the registration confirmation, please contact us at plant.health[@]cdfa.ca.gov.


Comment Format:

♦  Comments should refer to the appropriate California Pest Rating Proposal Form subsection(s) being commented on, as shown below.

Example Comment:
Consequences of Introduction:  1. Climate/Host Interaction: [Your comment that relates to “Climate/Host Interaction” here.]

♦  Posted comments will not be able to be viewed immediately.

♦  Comments may not be posted if they:

Contain inappropriate language which is not germane to the pest rating proposal;

Contains defamatory, false, inaccurate, abusive, obscene, pornographic, sexually oriented, threatening, racially offensive, discriminatory or illegal material;

Violates agency regulations prohibiting sexual harassment or other forms of discrimination;

Violates agency regulations prohibiting workplace violence, including threats.

♦  Comments may be edited prior to posting to ensure they are entirely germane.

♦  Posted comments shall be those which have been approved in content and posted to the website to be viewed, not just submitted.


Pest Rating:  A

 


Posted by ls